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Chapter 7:

The appearance of
curved surfaces

with even rates of bending

(Proper Spheres, Equidistant Surfaces,
and Horospheres )
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After one is familiar with the odd visual appearance of Non-Euclidean P RA WIN G 73':‘ PROPER.SPHERE S are formed by revolving
planes, it seems like it might be easiest to study curved figures first in Proper Circles" around their centers.
2-dimensions, with 3-dimensional versions following afterwards.
(My better order of presentation might be: Chapters 1, 6, 4, 5, then this 7.)

PROPER SPHERES:

In Chapter 5 (pp. 66-84) we saw Perspective views of
curved planar lines having "even rates of bending" -- Proper
Circles, Equidistant Curves, and Horocyles. The rate of
bending for those curves is equal at every point onlong their
path. In Euclidean Geometry a curve having an even rate
of bending is always a circle (or part of a circle).

The 2-Dimensional planar curves of Chapter 5 can be
revolved to form 3-Dimensional curved surfaces.

DRAWING 33A4 (p. 68) showed Proper Circles on flat
planes. Here, in DRAWING 73, two of the circles of
DRAWING 33A4A have been revolved to form Proper Spheres.
(To expose their poles to view I have arbitarily tilted their
axes of rotation out of the original plane.)

As 1in Euclidean geometry, in Hyperbolic and Elliptic
spaces, every possible radius line is perpendicular to the
surface of the sphere.

Constant factor

k=50

The Perspective appearance of Proper Spheres could
become the subject of lengthy study. Let me quickly
discuss two interesting aspects. Firstly, in Euclidean and
Hyperbolic geometries it is not especially surprising that the
Eye sees less than half the spherical surface (if the Proper
Spheres are opaque to rays of vision); but in Elliptic
Geometry the Eye often sees MORE than half the surface.

Type of Geometry

_ s Euclidean
_ /// -

Hyperbolic Euclidean Elliptic

Secondly, the profile of a Proper Sphere will form a
circle on the Perspective picture-plane ONLY when its
center is precisely on the central line of sight (the
perpendicular from the flat picture-plane through the Eye).
As the sphere moves off-center its profile deforms --- in all
three geometries. This unnatural distortion in Euclidean
Perspective has long been considered as a defect in
Perspective theory. For centuries artists have broken
Perspective rules and drawn circular profiles to illustrate all

- o, . - Type of Geometry Constant factor
spheres, regardless of their positions on the picture plane. Hyperbolic k =50
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EQUIDISTANT SURFACES

1. EQUIDISTANT TUBES:

Equidistant Curves were illustrated in DRAWINGS 33b - 36
(pp- 70-76). Those Equidistant Curves may be revolved to become
three-dimensional curved sufaces in two different ways.

Here, in DRAWING 74, an EQUIDISTANT TUBE may be
generated by revolving an Equidistant Curve along its base
Representative Line. The resulting 3-dimensional surface will at
every point be at an equal distance from the straight Representative
Line (measured in an orthagonal manner).

DRAWING 74 generates Equidistant Tubes by taking the
Equistant Curves of DRAWING 34 (p. 72, copied in smaller size
directly below) and revolving one (at distant "10") around the axis of
its base straight Representative Line. (Everthing has been rotated 90
degrees to fit better into our picture frames.)
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DRAWING 74:

EQUIDISTANT TUBES

|
— REPRESENTATIVE LINE 10

T

EQUIDISJIAI\ T "TORUS"

INTERNAL RADIUS =10

FINITE LENGTH (=2-Pi‘k)
|

L

O B
PERPENDICULAR

[ E I [ R

ype of.Geome.tly Constant factor Tre—
Elliptic k=50 z =100
C
7~ /- Jr————F Y N~ N\
i i i i
et ————fF—————F ———— T T3
} REPRESENITATIVE|LINE ! { B (
N T ~
 E— 777/*777 777,7777 4", 777777777777 4,, PE&\,P?]—FL DIquLA
| |
77777 e e i T o e e e e
r—_\_/____\/_____ A _ Ry P ____\_J _]
EQUIDISTANT "TUBE" (a "Cylinder")
RADIUS = 10
INFINITE LENGTH
Type of Geometry T Distance to the Plane
Euclidean .- ' z =100
Horizon EQUIDISTANT "TUBE"
of Plane RADIUS = 10
INFINITE LENGTH
REPRESENTATIVE LINE
L — \ <
o A L S S v e,
e R AN A Tt T A
AN L9 L P LA
-._ A s St i Al 8 :
\ L
PERPENDICULAR

Type of Geometry

Hyperboiié--..________ k

Constant factor

50

Distance to the Plane

z =100




2. EQUIDISTANT SURFACE:

A second method of creating a 3-D Equidistant Surface is to
revolve the straight Representation Line and its co-planar Equidistant
Curve around a perpendicular axis. The endless straight
Representation Line is spun into an endless flat plane, and the
Equidistant Curve is spun into an endless curving Equidistant
Surface. Every point on the new Equidistant Surface is at an equal
perpendicular distance from the flat plane; and every line
perpendicular to the flat plane meets the curving Equidistant Surface
at a 90 degree angle.

For me, these Equidistant Surfaces are one of the best illustrations
of the character of Non-Euclidean spaces. In Elliptical Geometry
the flat base plane appears to encircle our Eye and its Equidistant
Surface is actually a gigantic Proper Sphere. If we traveled outward,
the density of the Elliptic space expands (and we appear be growing
taller, though our actual height has not changed). No matter which
direction we move, no matter how far we go in Elliptic space, the
upward curving Equidistant Surface always remains at the same
height above the flat base plane.

In Euclidean Geometry an Equidistant Surface is always a flat
parallel plane.

As our Perspective Eye looks out across a flat Hyperbolic plane,
the infinite Equidistant Surface arches above it like an inverted
saucer, ever bending downward. But if we travel out into the distance
along the flat plane the Hyperbolic space gets ever denser (we appear
to be growing shorter). No matter which direction we head, and no
matter how far we go, in the ever-denser Hyperbolic space the length
of the distance between the downward curving Equidistant Surface
and the flat plane never changes. The even rate of the densification
of the space is revealed in the even rate of bending of the Equidistant
Surface.
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DRAWING 75: EQUIDISTANT SURFACES are everywhere at
an equal perpendicular distance from a flat base plane
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EQUIDISTANT SURFACES can always be formed in
symmetrical pairs, one on each side of the flat base plane.

In the case of Euclidean spaces, such Equidistant
Surfaces will form two flat planes parallel to the base plane.

Two endless Equidistant Surfaces in Hyperbolic space
are viewed in Perspective here in DRAWING 76. The
Representative Line (the straight base line -- "A-A") is
revolved around one of its perpendiculars (line "E-F").
Point "B" is the then the center of rotation. Two equally
spaced Equidistant Curves ("A-E-A" and "A-F-A" are also
rotated to form two continuous Equidistant Surfaces.

In this Perspective view the pair of Equidistant Surfaces
form a single apparent ellipsoid (rotated ellipse) but in fact
the "Ideal Points" at "A" are infinitely far away (at the
Horizon) and the two Equidistant Surfaces never meet (in
Proper Space).

The two small drawings below separately illustrate the
flat base plane and each of its two symetrical Equidistant
Surfaces (one to the right, outside the base plane, and one to
the left, inside the flat base plane).
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DRAWING 76: EQUIDISTANT SURFACES come in pairs

HORIZON OF PLANE
SET PERPENDICULAR TO
CAMERA'S CENTRAL RAY

IDEAL POINT
(at Infinity)

L DWN

."ll.

W

iy

i

il
I

LA

Type of Geometry

Hyperbolic

J

/)

I

A

HA

N
/ \\\\\\ A

2

ez
o

’
: %
! — (I
= el :
Z‘T . < :
e o 1B -
Q m | : ULTRA-IDEAL
A 0! [ POINT
5 \ m ! / (beyond Infinity)
o\ 2 I
= |
\ S
s -
britwmnGss . \ s
™~ ,‘,.JX
Type of Geometry . Constant factor Distance to the Plane
Hyperbolic k=50 z =100

~
~
~— -

A-A
-
)

ULTRA-IDEAL
POINT




EQUIDISTANT SURFACES in Elliptical Geometry:

In two-poled Elliptical Geometry a Proper Sphere with a
radius of half the distance between the poles (1/4 the finite
length of a line) forms a flat plane. Equidistant Surfaces on
each side of the flat plane are also Proper Spheres. All three
Proper Spheres have the same centers, but each surface has
two centers -- one on each side. In the istropic versions of
Elliptic Geometry discussed in this book all straight lines of
the space have the same finite length.

I was having trouble imagining the Perspective
appearance of a symmetrical pair of Equistant Surfaces on
each side of a flat Elliptic plane, so I drew the series of
Distance Diagrams seen here in Drawing 77. Using the Eye
as a fixed origin point, these diagrams take a planar slice
through the space and plot the distance of various points
along various angles seen from the Eye. We can imagine
the Eye rotating and looking any direction. When the Eye
changes position we must draw a new diagram. The series
shows what the Eyes sees from various positions as it
travels along a perpendicular path through the flat plane.

The Eye starts at 1/4 the finite length of a line away from
the flat plane ("78.5", upper left). The flat plane and its
Equidistant Surfaces will appear as precise spheres
encircling the Eye. Equal distances measured along the
surfaces will appear to the Eye within equal angles.

As the Eyes moves relatively closer to the flat plane, the
encircling images swell and stretch like elastic bubbles.
When the Eye is precisely upon the flat plane (""0.0"), the
flat plane appears as a flat sheet extending out on cither
side, with barely more than a single point connecting the
outer edges, stretched out across the rest of the surrounding
field of view.

At the end of traveling 1/2 the length of a line ("78.5",
lower right) the Eye again sees the flat plane and
Equidistant Surfaces as precise spheres, but now everything
is inside-out, and the Eye would need to travel the
remaining 1/2 line's distance (not illustrated here), passing
back through the flat plane, to return to the same view (at
the same position) where it started.

This diagram shows an Eye's view out to a distance of
1/2 a line length. What does the Eye see farther out?
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DRAWING 77: Diagrams of a plane cut through an Elliptic
space, showing the distances and angles from the Eye to a flat
plane and a symetrical pair of Equidistant Surfaces
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Drawing 78 takes three of the Distance-Diagrams from Drawing
77 and doubles the length of their views. On the left are three
diagrams with the Eye's sight limited to 1/2 the finite length of a line;
and on the right are the same diagrams with views extended twice as
far -- to the full length of a line in the Elliptic space. The outer edge
of the circle-limit is then the point occupied by the Eye itself. The
Eye could rotate from it's fixed position to look in any direction, and
at the distance of the full length of a line of sight it would see its own
back (whatever we imagine the back of an Eye would be if nothing
opaque blocked the rays of vision returning to the point of their
origin).

The visual location (angle and distance) of the flat plane and the
symmetrical pair of Equidistant Surfaces are shown.

Looking farther out into space, (if everything is translucent) the
Eye sees all three surfaces twice. Farther in the distance it now sees
the inverted backsides of those three spheres, in an exactly opposite
direction.

In the third comparative example as the Eye is positioned exactly
in the flat plane, only half a line (half the flat plane) and half the
corresponding Equidistant Curves are illustrated. The Eye can see to
the end of half the length of the Line, or turn around and see that half
the flat plane receeding back to the Eye. Past a distance of half the
finite length of a line in Elliptic space, a Perspective view shows an
upside-down mirrored view.

These are only Diagrams. What would complete Perspective
views of these extended distances look like?

And if there were nothing blocking it, what would an Eye see if it

could look still farther out into Elliptic space (rays of vision circling
around more than once) ?
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DRAWING 78: Three examples from DRAWING 76 with views
extended out twice as far.
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Elliptic Geometry started from an initial assumption that
distance will grow smaller between two co-planar straight
lines set mutually perpendicular to a base line. Though the
lines are straight (and will appear straight in Perpective
views) we can picture that assumption of convergence in a

diagram, thus:

If we position our Perspective Eye at the point where all
such mutually perpendicular lines meet (called a "pole"),
and if we assume that our Elliptic space has two such poles,
then we have an optical condition for that Eye which may

be diagramed like this: %
: (o]
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Q N - - SEENS] 0 - o =
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EYE
(The back
of the Eye)

K=50

Length of a Line
=4(PHK

As the figure moves away from the Eye its image at first
gets smaller. Then, past 1/4 line length, the image grows
larger; until, at the the opposite pole (1/2 line length), the
image becomes infinitely large (like pressing the camera
directly against the figure). Beyond the pole opposite the
Eye the figure's image appears inverted-- mirrored
right-to-left and flipped top-to-bottom. The image again
grows smaller as the figure continues to move farther, but
again starts to grow larger past 3/4 line length.

If visual rays had finite speed and the Eye moved fast
enough to permit rays to repeatedly circle through space,
would the Eye see multiple images?

A Perspective illustrator may arbitrarily set a limit to the
maximum length of visual rays. (This books typically uses:
"1/2 line" length, in Elliptic spaces.)

This is a basic characteristic of Perpsective illustration
for any Elliptic Geometry. It should have been presented
early in this book, not near the end. Such is discovery.
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DRAWING 79:

Comparision of Perspective images of a figure

set at varying distance from the Eye (in all 3 Geometries).
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HOROSPHERE:

In Hyperbolic Geometery a HOROSPHERE is a Proper
Sphere with radius of infinite length.

A 3-Dimensional HOROSPHERE can be formed by revolving
a 2-Dimensional Horocycle around any of its radii.

Here, in DRAWING 80, we take the planar Horocyle drawn
through two arbitrarily given points, "D" and an Ideal Point
"B'". For convenience we rotate the Horocyle along axis ""A-B"",
one of its parallel radii. 'The Horosphere appears below,
rendered as a gridwork of latitudes and longitudes.

On this page that same Horosphere is shown in two parts. The
upper figure shows the half of the Horosphere beyond the
original plane, and the lower figure shows the half in front.
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While at first it might appear that the Perpsective image has
fairly evenly spaced out all the elements of the Horosphere, in
fact almost its entire surface resides at point "B'"'. With both
the Horocyle and Horosphere the elements we see beyond ""B"
are less than one degree arc, only a fracture of their totalities.

Horospheres and their Parallel radii are perhaps the strangest
creatures in Hyperbolic Geometry; but with their even rate of
curvature being a fixed constant everwhere in the space, they
turn out to be useful friends. 151

DRAWING 80: Perspective view of a HOROSPHERE
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Chapter 38:

Other
Drawing Methods

(Distance Diagrams, Spherical Perspectives,
Glide Projections, Orthagonal Projections, and more)

153.




Geometry texts have always been accompanied by illustrations,
and such figures merit thoughtful consideration.

This final chapter will list a few of the endless possibilities for
constructing geometric visualizations, beyond the Perspective
illustration system which has been the main subject of this book.

1. DISTANCE DIAGRAMS:

The simpliest way to construct precisely measured illustrations of
Non-Euclidean figures is to take values of angles and/or lengths from
the Non-Euclidean space and use them to plot a DISTANCE
DIAGRAM in Euclidean space. This can be done, provided that one
starts at one (and only one) point, and then graphs every other
position in by consistent procedure.

Three different procedures for constructing such Distance
Diagrams are shown here in DRAWING 81. My favorite is #3,
which uses polar coordinates. All the Distance Diagrams seen
elsewhere in this book use this angle-distance method.

If you imagine your human eye located precisely at the starting
point, you can swivel it around and imagine the realistic retinal
images of the Non-Euclidean space which it might see. But if you
move your imaginary human eye to anywhere else (like viewing the
Distance Diagram from above) the image will appear inappropriate --
greatly distorted.

Two-dimensional Distance Diagrams are shown in Drawing 81,
but methods can be used to create three-dimensional scale models of
Non-Euclidean figures as well.

Three-dimensional Distance Diagrams can be illustrated in
Euclidean Perspective illustrations (as seen in Drawings 69, p. 132;
and Drawing 71, p. 134.)

Alternatively, Distance Diagrams might re-arrange perpendicular
axis lengths ( by methods #1, or #2) into traditional Axiometric or
Obliqgue 3-dimensional illustrations.

Additions variations to the consistent methods for creating
Distance Diagrams are possible.

Construction details for the 3 Distance Diagram methods of Drawing 81:

1. Perpendiculars: Starting from EXZ (point "O"), the Non-Euclidean values of "TAB" and
"BC" are used as Euclidean values for the corresponding Euclidean co-ordinate system, "X"
and "Y", and scaled to suitable proportion to draw as a Distance Diagram.

2. Perpendiculars: Starting from 382 (point "O"), the Non-Euclidean values of "OC" and
"BC" are used as Euclidean values for the corresponding Euclidean co-ordinate system, "X"
and "Y", and scaled to suitable proportion to draw as a Distance Diagram.

and the best method:

3. Polar Coordinates: Starting from 182 (point "O"), the Non-Euclidean polar coordinate
system values ( ¢, ©, R) describing the position of any given point "B" are used as
Euclidean polar coordinate system values ( ¢, ©, R) and scaled to a suitable proportion to
draw a Distance Diagram.
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DRAWING 81: 3 ways of drawing a DISTANCE DIAGRAM

Using point O (at mark [X ), as an initial fixed reference origin,
any Point "B" is plotted by transposing the Non-Euclidean lengths

into Euclidean values.
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The Perspective illustrations in this book all use the same set-up,
so that the reader may compare pictures as if they had been
photographed by one camera. Some pictures have been reduced (or
enlarge) and in some pictures the rectangular format has been
expanded into a square -- otherwise the format producing all the
Drawings of the first seven chapters of this book is uniform.

Perspective illustrations, however, may be set-up in other ways.
The distance from the aperature (Eye) to the picture plane may be
varied, the picture plane may be tilted, shifted aside, or assigned
various shapes. Much of the art of Perspective illustration is in
deciding how to set up the Perpsective geometry. The standard rules
of Perspective require that the picture plane must remain flat and the
cone of vision should not exceed approximately 60 degrees overall
width, otherwise there are innumeral possibilities.

2. SPHERICAL PERSPECTIVES:
(also called "Curvilinear Perspective'" or "Wide Angle" pictures)

In Spherical Perspective the flat picture plane of our regular
Perspective is generalized into a sphere, a clear globe surrounding
the Eye through which rays of vision pass at specific points.

SPHERICAL
PERSPECTIVE
uses a round surface

Regular
PERSPECTIVE
with its flat plane

Flattening the sphere into a 2-dimensional surface is exactly the
same problem as flattening the round surface of the Earth into a map.
The systems of geometrical cartography are endless in number.
Drawing 82 shows four typical examples of "azimuthal" Spherical
Perspectives. Adjusted to equal sizes, they each illustrate a
Hyperbolic plane with a close-packed tiling of equilateral triangles.

DISTANCE DIAGRAM
(angle-distance method)
-- Equilateral Triangles
on a Hyperbolic Plane

HYPERBOLIC k= 40.34663

Our Perspective illustration method turns out to be one version of
Spherical Perspective, the "Azimuthal Gnomonic Projection" method
(shown in Drawing 82 as example "1".)
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DRAWING 82: 4 Different SPHERICAL PERSPECTIVE views
of the tiling of Equilateral Triangles in Hyperbolic space (by
means of 4 different Azimuthal projection methods)
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DRAWING 83: SPHERICAL PERSPECTIVE view of one-half
of an Elliptic plane tiled with equilateral triangles, by means of
an Azimuthal Equidistant Projection.

(Previously seen
illustrated

in Perspective
on page 133.)

ELLIPTIC k= 39.7417 Z= 80

Perspective views of Elliptic space have trouble seeing sufficient
portions of a flat plane encircling the Eye. Spherical Perspectives
offer methods to illustrate wide-angle views, though they sacrifice
the ability to illustrate straight lines in the object as straight lines on
the picture plane (except for the Azimuthal Gnomonic version --
Perspective). A A

Regular
PERSPECTIVE SPHERICAL
PERSPECTIVE

uses a flat

picture plane uses a round surface

Elliptic

Ellipti
plane ~ 1pHie

plane

Here are five examples of Spherical Perspective views of an Elliptic
space, including three that illustrate the entire space. 3-dimensional
spaces can also be illustrated with all such Spherical Perspective
methods.

DISTANCE DIAGRAM
(angle-distance method,
from point "O" on

the plane)

-- Equilateral Triangles
on an Elliptic plane

MAP OF ICOSAHEDRON

~_ _-
ELLIPTIC T———""k=39.7417

Doing these drawings, I was surprised that the 'tiling' of equilaterial
triangles in Elliptic space was an Icosahedron. All the close-packed
tilings of equilateral polygons must similarly be Platonic solids.
Proper Sphere, Platonic solid, and flat plane -- all at the same time.
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DRAWING 84:

Four SPHERICAL PERSPECTIVE views of

the tiling of equilateral triangles on a flat Elliptic plane, by
means of four different cylindrical projection methods.

LONGITUDE

135.0
112.5
90.0
67.5
45.0
22.5
0.0
22.5
45.0
67.5

90.0

112.5

LATITUDE

LONGITUDE

Elliptic k= 39.7417 Z— 80| |Elliptic k—39.7417 Z=80
GNOMONIC R STEREOGRAPHIC N
CYLINDRICAL CYLINDRICAL
PROJECTION PROJECTION
LONGITUDE
LONGITUDE

3

Elliptic k=39.7417 7Z—=80| |Elliptic k=39.7417 Z=80

EQUIDISTANT ORTHOGRAPHIC

CYLINDRICAL CYLINDRICAL @%A

PROJECTION PROJECTION ]
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3. GLIDE PROJECTIONS:

Instead of one Eye set at a single fixed position, GLIDE
PROJECTIONS are a family of drawings where the Eye glides along
a path in front of the object. (Reference: Glide Projection: Lateral
Architectural Drawing, by Kevin Forseth, 1984.) In its simpliest
versions an illuminating slit sweeps a surprisingly realistic view
across the drawing surface.

PERSPECTIVE g /T é GLIDE
uses a fixed Eye PROJECTION

uses a moving Eye.

It is difficult to illustrate good views of flat planes in Hyperbolic
Geometries. Their images diverge away from the Eye. It occurs to
me that some sort of GLIDE PROJECTION system might inspire the
invention of future Hyperbolic views taken from a roving Eye, or
some sort of "concave fly's-eye" multi-Eyed camera.

\ /
\ /
\ /

\ /
\ /
& X@;
\ /

\ /

\ /

\ /

\ /

\ /

\ /

\ /

\\ // GLIDE

N Vi PROJECTION

PERSPECTIVE of \ / Eye moves and rotates
a Hyperbolic Plane N e across the Hyperbolic
X 4 Plane

This book contains no GLIDE PROJECTION illustrations.

4. OTHER PROJECTIONS:

An endless variety of projection illustration methods might be
imagined. Here, in DRAWING 85, is an unusual system where the
positions of the Hyperbolic plane are established from point E, but
the visual rays are projected onto the sphere from an Eye located at
twice the perpendicular distance from the plane (on the sphere).
This is not exactly a SPHERICAL PERSPECTIVE because the Eye
is not at the center of the spherical picture plane; so, here I'm calling
ita STEREOGRAPHIC PERSPECTIVE.

There are endless other possibilties for projection methods.
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DRAWING 85: "STEREOGRPHAPHIC PERSPECTIVE"
view of the tiling of equilateral triangles on a Hyperbolic plane.

DISTANCE
DIAGRAM

A Positions on a plane
in Hyperbolic space

are located with respect

to "E" at the center
of the sphere

Then tl"lose positions
are projected onto the
picture plane from

a point twice as far
from the plane as E.

Line work not extended all the way to horizon

(Line-work not extended all the way to Horizon.)

HORIZON

Hyperbolic k= 40.34663 Z= 80

AZIMUTHAL
STEREOGRAPHIC
PROJECTION

CYLINDRICAL PROJECTION

Derived from the above Azimuthal Stereographic Projection

by an Equidistant method (as shown in the diagram)

HORIZON
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5. ORTHOGONAL PROJECTION:

ORTHOGONAL PROJECTION, also called ORTHOGRAPHIC
PROJECTION, is a method of projecting points from objects onto a
flat picture plane along straight lines perpendicular to that picture

lane.
P As our examples we again consider the flat plane with tilings of
equilateral triangles, set at a distance of 80.

In Non-Euclidean Geometries an ORTHOGONAL
PROJECTION (taken from an assumed distance away from point
"O") is slightly different from a Distance Diagram (taken directly
from point "O").

D XA
OGS

DISTANCE DIAGRAM seen from point "O"
Hyperbolic k= 40.3466

HYPERBOLIC

e+

(O —va
Wl

e—

Elliptic DISTANCE
plane DIAGRAM
of an

ORTHOGONAL R AN < g O
PROJECTION DISTANCE DIAGRAM seen from point "O

seen from point E Elliptic k= 39.7417
(EO=80)

ELLIPTIC
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DRAWING 86: ORTHOGONAL PROJECTIONS
Diagrams showing a tiling of equilateral triangles on a plane
in Elliptic and Hyperbolic spaces.

TfGemel Constgnt factor DiNtancefo thd Plyne
3 J— 2 Q
pexrbolic K = 40.34466 X 30

Type of Geometry Constant factor Distance to the Plane

Elliptic k=39.7417 z = 80
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In the business world of commercial drafting,
ORTHOGONAL PROJECTION is the most commonly
used method of visualization. '"Plans, Sections, and
Elevations'" are Orthogonal Projections used for building
construction.

I would like to show you a system of sketching with
ORTHOGONAL PROJECTION that evolved as I drew
little figures while trying to orgnize the calculations for the
Perspective drawings in this book.

Not being agile in the use of advanced Non-Euclidean
theorems, my calculation strategy simply triangluated the
space into a network of right-angled-triangles, plus a very
few non-right-angled triangles. Solving for points assigned
to complex positions in 3-dimensional space quicky left
with me an incomprehensible tangle of triangles -- it was
hard to see what was, or was not, going to be a right-angle
perpendicular in Non-Euclidean space.

Sketching in an Orthagonal Projection format gave me a
way to organize the right-angles and mentally hold onto
them long enough to dispel utter confusion.

In its pure form an Orthogonal Projection drawing of
Non-Euclidean Geometry would use a Distance Diagram as
its base plane, but I preferred to keep straight lines straight
(when mentally possible). So, my base plane figure is a sort
of Perspective sketch of a plane slicing through the
Non-Euclidean space. The alignments of points above and
below the base plan are strictly orthogonal -- all the
positions along a line perpendicular to the base plane will
be drawn coinciding at the same point (on the base plane).

To draw on the picture plane the Perspective position of
any point, the polar coordinates of its angles with respect to
the Eye are needed. (I also calculate its distance, to
sometimes use in further calculation steps or in "checking"
computations). Though I initially used "X, Y, Z"
(Cartesian) coordinates to compute Perspectives, I've
discovered that polar coordinates are a bit faster.

For some people, solving Perspective geometry problems
is a lot of fun. For learning a subject, the experience of
solving problems for oneself is often unsurpassed. At this
early stage of development, I find is easy to believe that
such practices might find (or create) new and better
methods to illustrate Non-Euclidean Geometry.
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DRAWING 87: Quasi- ORTHOGONAL PROJECTION method
used for sketching trianglulation of the location of one point
("S") of a complicated geometric figure in Elliptic space

00 )
Elliptic 1&540

THREE "LAMBERT QUADRILATERALS"

Arrangement II -- 2 interior right angles meeting,

and one exterior right angle

(Previously seen as Drawing 56 on page 115)

Elliptic k=40

SKETCH OF PERSPECTIVE SET-UP

SOLVING FOR "S":
To find coordinates for point S from point E,
we would first find positions for B,C, and F.
Here, we start by assuming that we already
have determined the length of AF,

and the value of angle <BAF.

Elliptic k=40

All of the points along line FS
will remain in a plane with EA

j> (FS will "lean toward" EA)
w | W
%
¥ S
" rReEEZ T
XZ Plane - U4 r
2r Ef Rl 28
A Flc B
w

1 L ]
Elliptic k=40

SKETCH SIMPLIFIED FOR POINT "S"

ORTHOGRAPHIC PROJECTION, SKETCH:
VIEW THROUGH THE PLANE OF "E,A,F,S"

We may slide the previously solved angle <BAF
up the mutual-perpendicular (EA) and use its
value as the value of <UEV.

Ly
R

Of
<30 v

/
|
/
/
|
|

@ \EAA @ X axis

Points E and A
will align along the
same line of sight

Z axis

2 L J
Elliptic k=40

We may slide <UVS up the mutual-perpendicular
(EV) and use its value as the value of <@, at the
origin, point E.

0
' b= <apPr
] ® O = <SEV
Points E and V >~
will coincide s
along the same
orthogonal line //\
of sight A
E,\L Y X axis
4 sl 2
cC ] ////’// F
A

3 L ]
Elliptic k=40

ORTHOGRAPHIC PROJECTION, SKETCH:
VIEW THROUGH THE PLANE OF "E, T,U,V"--
A PLANE FORMED BY THE X AND Z AXES

ORTHOGRAPHIC PROJECTION, SKETCH:
VIEW THROUGH THE PLANE OF "E, A" —-
A PLANE FORMED BY THE X AND Y AXES
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Slowly I tired of calculating each individual point all the
way back to the position of the Eye; and started looking for
faster procedures.

For quite some time I tried to formulate a way of
transposing orthogonal coordinate axes from one point in
Non-Euclidean space to another -- a generalized 'gyroscopic
co-ordinate system' where positions of orthogonal axes
could be reformulated from one place to another.

One of the persistent problems was the inability of my
computer to differentiate which quadrant a trigonometric
function was describing. Generalized procedures needed to
crisscross between various 'quadrants' and across the poles
of Elliptic space.

A calculation apparatus I developed depends heavily on
ORTHOGONAL PROJECTIONS. I can (relatively) easily
"look through the plane of the Eye" and quickly see into
which quadrant a point should fall (then tinker with my
computer-equations when necessary).

PERSPECTIVE SKETCH
(Freehand drawing -- nothing calculated or precisely measured.)

Y axis

4 Hyperbolic Cubes
g

@
/ E

Hyperbolic Geometry k=40

X

a)(is

I can compute the postions of the corners of cubes with
respect to point Bs, or as a chain of calculations from a
point such as C. Rotations of a cluster in Non-Euclidean
space can be at point "O" by Euclidean methods. This sped
up my calculations, but I never got a fully mobile
gyroscopic coordinate transformation system to work.
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DRAWING 88: Solving for any point "A" in a coordinate system
centered at any point "O"

1}
e
¢
A
5]
e N7
pre ~N
T 74\‘5
— ~N yp .
~ N o %O
- ~ o~
/ ~ N 2
7 ~ 0N d
~
” o Xo AXIS
% -7 s °
. / \ ‘e ¢O
~N
> / N g e
/ ™~ > 7
/
/ —
/ e] - a - -
— ~
/ et P
/ —~ _— -
= ¢ X. AXIS
b
4
% g.A
< a
AN
B / L
> / N
// ~N N
/ \\
/ S
/ /-/)T a,0O,d
/ ) o
/ - ‘
/ — |
> E 7 EP. B X, AXIS
b
"Orthogonal projection Diagram'" of the "X-Y plane"
of the coordinate system at E.
(All lines perpendicular to the Diagram's plane Diagramical sketch
are drawn as points.) of the "aOA plane"

Multiple orthogonal co-ordinate systems:
The Perspective is computed for a general point "A"
seen from the Eye, at point "E".

Various points "A'" of an object may be constructed in a co-ordinate
system centered at point "O", then projected into Perspective from
a second coordinate system centered at "E'".

Resolving quadrant conditions for the various trigonomic functions
is a headache, and I found that I could more easily envision this
assembly using a planar Orthogonal Projection diagram, where

the X-Y plane of the co-ordinate system centered at E gives views
somewhat similar to the final image on the Perspective picture plane.

167.




In the literature of mathematics there is already much about the
following five models for visualizing Hyperbolic Geometry:

1. The HYPERBOLOID MODEL (also known as the Weierstrass
Model, the Minkowski Model, or the Minkowski-Lorentz Model).

Images derived from it, by various projection methods, are:

2. The KLEIN DISK MODEL (also known as the Beltrami Model,
the Beltrami-Klein Model, the Projective Model,
the Cayley-Klein Model, or Central Projection);
3. The POINCARE DISK MODEL (the Conformal Disk Model),
4. The POINCARE HALF-PIANF MODEL:; and
5. The GANS MODEL (Orthogonal, or Orthographic, Projection)

While constructing the Non-Euclidean Perspective drawings (and
other visualizations) of this book, I was aware of these five models,
but did not derive my methods directly from them. Because they
looked similar, I imagined that the Hyperboloid Model was simply
one of my Distance Diagrams (pages 154-155).

But now, at the end of my study, when I look closely at these
models, I am surprised to see that I was wrong; the Hyperboloid
Model is NOT a Distance Diagram, and therefore the Klein Model is
(apparently) not exactly a Perspective method.

One obvious difference is that one of our Perspective
assumptions, that the camera be relatively infinitismal with respect to
the object being viewed, is violated by the set-up of the Poincare
Models, whose relationship to the Klein Model depends on the
sphere having a radius equal to the full distance to the object.

The more basic problem is that I have not been able to fit the
Hyperboloid Model to a Distance Diagram. They look awfully
similar, but I conclude that the Distance Diagram of a Hyperbolic
plane is apparently NOT a hyperbola. The closest match I could find
left a slight difference, thus:

\_/Dlstance Diagram:

(angle-distance method)
e k= 1.0/ ArcSinh (1.0)
EO=1.0

So, while the Unit Hyperbola of the Hyperboloid Model is related
to the formulation of the hyperbolic trigonometric functions used in
Hyperbolic Geometry, how that model represents a plane in a
Hyperbolic space (and how the four subsequent projections relate to
the standard methods of Descriptive Geometry) remains a problem.

13th January 2017
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DRAWING 89: FIVE MODELS OF HYERBOLIC GEOMETRY
Euclidean "Section view'", showing construction of all five models.

1. HYPERBOLOID MODEL::
a "Unit Hyperbola" (shown here)
rotated about its cental axis,
represents a Hyperbolic Plane

T

Typical point
(being Viewe@\]
A
/
icture plane —~ K Gl
N o © T P H
AN /’ 0]
N\ B < —~ g
/N g 3
‘ AN /] \ 27
/ N y S o
/’ N / \ g “
/ N // EE-
/ N /, \ 5.2
5 N4 . e

\ Y
AN /
N e
\‘\ F /,/
2. KLEIN MODEL: point "K" 4. POINCARE HALF-PLANE
on the flat picture plane, MODEL: point "H"
projected from "E". on a cylindrical picture plane

projected from "J", through "B"

3. POINCARE MODEL.: )
point "P" 5. GANS MODEL: point "G"

on the flat picture plane, on t.he flat picture plane,
projected from "F'". projected orthogonally
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EPILOGUES

WHY STUDY NON-EUCLIDEAN PERSPECTIVE ?

My friends ask, "What are you doing today?" and I sometimes
describe this book. Then I'm asked, "Why are you doing that?
What's the practical value?"

Two reasons NOT to study Non-Euclidean Perspective:

1. ... to replace Euclidean geometry.

Don't worry, your trusty old Euclidean Geometry isn't on its way
out. To learn Non-Euclidean Geometries is to see why Euclidean
Geometry was selected in the first place -- it's better balanced, more
flexible, most elegant. Non-Euclidean Geometry is "expansion'", not
"replacement".

2. ... to learn Non-Euclidean Geometry.

Not exactly. If looking at Perspective pictures taught Euclidean
Geometry then wasting time trying to teach Synthetic or Analytical
Geometry by means of axiomatic logic would have ended long ago.
A novice can learn quite a bit about an airplane by simply looking at
pictures or movies; but building an airplane, or flying an airplane,
requires deeper understanding.

Two reasons FOR studying Non-Euclidean Perspective:

1. Since the late 19th Century, there have been questions about how
natural forces are transmitted invisibly through empty space. There
has long been speculation that Non-Euclidean Geometries might
possibly offer a flexible new model of Space, an aether which could
deform (strain) in order to transmit force (stress) imposed upon it.
Surprisingly similar to the mathematical descriptions of the elastic
behavior of architectural structures, 7he General Theory of Relativity
employs Non-Euclidean Geometry to describe the deformations of
Space and Time caused by Gravity. Tying our visual brain faculties
of sight into this study of the spatial deformations of Non-Euclidan
spaces might perhaps someday lead to a better picture of other
Force-transmissions.

2. To see what we can see.
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PROBLEMS OF NON-EUCLIDEAN PERSPECTIVE

Once we unlock the Fifth Postulate of Euclidean Geometry, we
get far too many new possibilities -- an infinity of Elliptic and
Hyperbolic Geometries, Gausian Geometry, innumeral Topologies,
Multi-Dimensional spaces, and so forth ad nauseam.

Likewise, once we start trying to visualize Non-Euclidean
Geometry, we get not only traditional Perspective, but also Spherical
(Curvilinear) Perspectives, Glide Projections, and the innumeral
methods of Descriptive Geometry, (not to mention the personalized
abstractions of Modern Art) -- far too many choices.

So, at the end of this book, may I please be permitted to suggest:

1. There is some sort of magic when straight lines appear on a
picture plane as straight lines; and by that attribute alone we may
single out Perspective (the Azimuthal Gnomonic Projection of
Spherical Perspective) as our star. We should keep Perspective as
our standard model of realism, even as we search for better methods
to illustrate the peculiarities of Non-Euclidean spaces.

If discoveries in Neurology and Perceptual Psychology diminish
our reliance on Perspective as the sole simultation of human
eyesight, I expect Perspective nevertheless to advance as our ""Ideal
Vision" -- a mathematical generalization of the commonly seen
comprehensive view of normal eyesight, and capable of having range
and precision far beyond the limits of biological vision.

2. Computers change everything. There is a trend to stretch the
Weistrass, Klein, Poincare, and Gans Models into more general
forms of visualization. It is my guess that it would be better to
preserve them in their original pre-computer states, and to expand
into new computer-calculated visualizations of Non-Euclidean
Geometry under the names already used in Descriptive Geometry.

3. In commercial drafting Orthgonal Projection methods are more
commonly used than Perspective, and I see no reason why such
shorter procedures (Distance Diagrams and Orthogonal Projections)
should not serve similar utilitarian roles in Non-Euclidean work.

But it is of paramount importance that viewers understand that it is
Perspective alone that is our ultimate realistic view; and it seems safe
to expect mental confusion if novices are introduced to diagrammatic
illustrations without first having Perspective established as their
standard of visual realism.

4. For any visualization, regardless of how standard or how unique,
it is its ability to activate and sustain the imagination of its viewer
(their inner-eye's grasp and understanding) which remains its highest
purpose.
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Appendix A:

Mathematical
Formulae

To thoroughly understand Perspective visualizations of
Non-Euclidean Geometry, one of the best learning methods
i1s to construct your own Perspective images.

The images of this book used MicroSoft Excel computer
bookkeeping software to compute points, which were then
connected with lines and curves during drafting. The Excel
2011 version I used could figure values of inverse
hyperbolic trigonometric functions (such as "ArcSinH").
All the equations I used are listed on the following two

pages.

The Excel software was not primarily designed for
Non-Euclidean calculations and I had some problems with
its proper reading of the quadrant of the circle the angles
were occurring in, and the rounding-off of some extreme
numbers. But it was readily available software and worked
reasonably well. Of course other computer methods will
also work.

My images were drafted using AuroCad Lite 2000.
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Trignometric Equations on a plane with invariant values of "&".

ELLIPTIC GEOMETRY

Trignometric Equations on a plane with invariant values of "A&".

HYPERBOLIC GEOMETRY

B
2 o
b
A f C
Relations of a RIGHT TRIANGLE
sin (a/k)
SiIn A= ———— cos (c¢/k) = cos (a/k) cos (b/k)
sin (c¢/k)
sin (b/k) cos A
simnB= ——— cos (a/k)y= ——
sin (¢/k) sin B
cos B
cot A cot B = cos (c¢/k) cos (b/k)y)= ———
sin A
tan (a/k) tan (a/k)
tan A =———— cos B =
sin (b/k) tan (c¢/k)
tan (b/k) tan (b/k)
tan B= ——— cos A =
sin (a/k) tan (c¢/k)
B
c
0
b
A C

Relations of an OBLIQUE TRIANGLE

cos (a/k) = cos (b/k) cos (¢/k) + sin (b/k) sin (¢/k) cos A
(Beware the change of + to - signs between Hyperbolic and Elliptic Geometries)

Euclidean: a= b’+ ¢’- 2bc(cos A)

B
2 o
b
A f C
Relations of a RIGHT TRIANGLE
sinh (a/k)
Ssin A= ———— cosh (¢/k) = cosh (a/k) cosh (b/k)
sinh (c¢/k)
sinh (b/k) cos A
simnB= ———— cosh (a/k) = ———
sinh (c¢/k) sin B
cos B
cot A cot B = cosh (c¢/k) cosh (b/k) =
sin A
tanh (a/k) tanh (a/k)
tan A =———— cos B =
sinh (b/k) tanh (c/k)
tanh (b/k) tanh (b/k)
tan B=———— CcCOs A = —
sinh (a/k) tanh (¢/k)
B
c
g
b
A C

Relations of an OBLIQUE TRIANGLE

sin (a/k) : sin (b/k) : sin (¢/k) = sin A : sin B : sin C

Euclidean: sin B: sin B: sin C = a: b: ¢

cosh (a/k) = cosh (b/k) cosh (¢/k) - sinh (b/k) sinh (c¢/k) cos A
(Beware the change of + to - signs between Hyperbolic and Elliptic Geometries)

Euclidean: a’= b’+ ¢~ 2bc(cos A)
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sinh (a/k) : sinh (b/k) : sinh (¢/k) = sin A : sin B : sin C

Euclidean: sin B: sin B: sin C = a: b: ¢
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Trignometric Equations on a plane with invariant values of "k&".

ELLIPTIC GEOMETRY

Relations of the "LAMBERT QUADRILATERAL"

tan X/k = cos 0 (tan R/k)

tan Y/k = sin 0 (tan R/k)

Trignometric Equations on a plane with invariant values of "k&".

HYPERBOLIC GEOMETRY

Relations of the "LAMBERT QUADRILATERAL"

tan O = (tan Y/k) / tan X/k
tan @ = (sin b/k) / sin a/k

sin L = (sin Y/k) / sin R/k
sin M = (sin X/k) / sin R/k

tanh X/k = cos 0 (tanh R/k)

tanh Y/k = sin 0 (tanh R/k)

(tan R/K) = (tan X/k) + (tan Y/k)

tan @ = (tanh Y/k) / tanh X/k
tan @ = (sinh b/k) / sinh a/k

sin L = (sinh Y/k) / sinh R/k
sin M = (sinh X/k) / sinh R/k

tan b/k = sin X/k (tan 0)

tan a/k = sin Y/k (tan 0)

(tanh R/k)Y = (tanh X/k)"+ (tanh Y/k)>

sin b/k = sin R/k (sin 0)

sin a/k = sin R/k (cos 0)

tanh b/k = sinh X/k (tan 0)

tanh a/k = sinh Y/k (tan 0)

cos b/k = cos R/k / cos X/k

cos a/k = cos R/k / cos Y/k

sinh b/k = sinh R/k (sin 0)

sinh a/k = sinh R/k (cos 0)
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cosh b/k = cosh R/k / cosh X/k

cosh a/k = cosh R/k / cosh Y/k
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ELLIPTIC EUCLIDEAN HYPERBOLIC
Geometry Geometry Geometry

CIRCLE

CIRCUMFERENCE of a planar Circle:

= 2 (Pi) k (sin R/k) =2 (Pi) R = 2 (Pi) k (sinh R/k)

AREA of a planar Circle:

— 2 (Pi) k (sin R/K) — 2 (PR — 2 (Pi) k (sinh R/K)

:

SPHERE

SURFACE AREA of a Sphere:

— 2 (Pi) K (sin R/K) — 4 (PR — 2 (Pi) k (sinh R/K)
2

VOLUME of a Sphere:

—(Pi)k (2R/k-sin 2R/Kk) — 4/3 (P R’ —(Pi)k (sinh 2R/k-2R/K)
? ?
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