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Chapter 6:

Regarding the
Perspective appearance
of straight-line figures
and flat surfaces
arranged in 3-dimensional
Non-Euclidean spaces
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This chapter will discuss the Perspective visual DRAWING 41: Two co-planar lines are set perpendicular to a
appearance of straight lines, figures drawn with straight vertical. A camera views them under 3 different assumptions.

llnes, and flat planes. 2. We assume that distance decreases between the two lines.

Typically, geometry is taught first in a two-dimensional
manner, then a third dimension is added; but because of the
peculiar visual appearance of Non-Euclidean planes, I think N
it might be easier for the reader to see 3-dimensional
visualizations first. So, this chapter is set up to be used as
the introduction to the visualization of simple
Non-Euclidean geometries. Future re-organization might
put this chapter after Chapter 1.

In this book, our Perspective picture-making set-up (our
camera) will always be the same, except that sometimes the Type of Geomeny
frame around the picture plane is enlarged into a square, Elliptic
(rather than using its normal rectangular shape). Otherwise,
the distance and angle between the point we call the Eye (or
pinhole aperture) and the flat Picture Plane onto which the
image is projected, will never vary. The size of the picture
image is thereafter sometimes enlarged or diminished to fit /[
onto various page layouts. Other Perspective set-ups are
certainly possible, but are not used in this book. Horizon N ‘

W

Constant factor

50

2. We assume that distance never varies between the two lines.

For Drawing 41 we set up a base line with two longer
co-planar perpendicular lines drawn from each end,
projecting outward into the space. In all three geometries
these figures are set up precisely the same -- distances and
angles are all exactly the same. The only thing different in T
the three drawings is our variations to Euclid's famous 5th Euclidean
Postulate, our assumptions about the distance between those
two co-planar perpendiculars.

3. We assume that distance never varies between the two lines.

In Drawing 41 we may readily see that straight lines
appear straight. (This turns out to be true always). The
perpendiculars (also called "Right Angles", or "90°
Angles'"), appear pretty much the same in each different
assumption. What appears to have changed is what we
assumed would change: distance. The size of objects in the
distance varies -- the space appears to be "compressing'" or Horizon
"expanding'.

In the background I have set up a similar observer, a T ——
camera looking back from the opposite direction . . . Hyperbolic k=50
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Non-Euclidean space can be described as a change in
density. In Hyperbolic space, measured sizes seem to
compress as we look outward. In an opposite manner,
measured sizes (distances) seem to expand as we look
outward into Elliptic space. Points, lines, angles, circles
and planes do not change. It is the distance between the
lines, within the fixed angles, that is changing. The density
of "distance" (measured lengths) is the change we see.

These simple forms of Non-Euclidean geometry are
completely homogenous, and symetrical. Every point in
these space has exactly the same character as ever other
point. More complicated forms of Non-Euclidean
Geometry, where the "density of measured lengths' varies
from place to place within the space, are possible but are
not discussed in this book.

Explanations describing the Non-Euclidean space as
"curving'" or being "warped" do not seem to me to be
appropriate. We will see shortly that flat planes will have
the visual appearance of warping, but such curving is

merely an optical effect (as we will see later in this chapter).

In Non-Euclidean Geometries, the rate at which "length"
grows denser, or less dense, is regulated by the constant
factor "k". The next drawing shows what happens at
various different values for "k'".
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DRAWING 42: Looking back in the opposite direction. In the
distance we see the position of the observer for Drawing 41.

Type of Geometry Constant factor

Elliptic 50
Horizon Q\dj \ —
Euclidean

M/jﬁ f |
F\ﬂ

Type of Geometry Constant factor

Hyperbolic 50
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When values of "k" are very large, Hyperbolic and
Elliptic spaces become approximately Euclidean. As "k"
values become smaller, the Hyperbolic spaces become
denser and the Elliptic spaces become less dense.

A couple of remarks:

When "k" becomes very big, a space becomes
approximately Euclidean. In real life we can not ever be
certain we are living in a precisely Euclidean world or
whether the "k" value is simply a bit larger than our
surveying tools are able to measure. To be totally precise,
we can only say that we assume that we are in a Euclidean
space.

Secondly, each "k" factor gives a Non-Euclidean
Geometry a unique scale for measurements. Unlike
Euclidean space, where a unit for measuring lengths must
be arbitrarily invented, in Non-Euclidean spaces "k" can
become a unversal measuring rod for that space.

The human figures are added to give a sense of size -- to
graphically illustrate the manner in which 'distant' is getting
denser, or less-dense. They are sketched approximately to
scale, so that all the humans are the same size within each
Drawing. If you wish to say that humans in these
Non-Euclidean Perspectives are illogical, you may ignore
them -- the line figures are logical without the decorative
human figures.
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DRAWING 43: Same as Drawing 41, but varying ""k''.

Elliptic

Euclidean

Hyperbolic k= 1,000

Elliptic k= 75

Euclidean

Hyperbolic k= 75

\

q =
H
Horizon \
v \J

Elliptic k= 50

Euclidean

Hyperbolic k= 50

Euclidean

Hyperbolic k= 40

Elliptic k= 30

Euclidean

Hyperbolic k= 30 i
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DRAWING 44: Add a third co-planar perpendicular at the

In Drawing 44 we add two more lines to the three lines
ing midpoint of the baseline, and fourth line at its end, set at 90°.

of Drawing 42. We add a third perpendicular at the
mid-point of our upright base. And we draw a fourth line at
a right angle to it, connecting the ends of the two outer
perpendiculars. This closes the three lines we first saw in
Drawing 41 as two four-sided figures. It turns out that
these two four-sided polygons are congruent mirrors of each
other.

"Lambert Quadrilateral" is a name given to these
four-sided planar figures. A Lambert Quadrilateral has four
straight sides and right angles at three of its corners.

In all three geometries, the two Lambert Quadrilaterals
on each side of the newly added middle line will always be L
mirrors of each other -- all the sides and angles will match ﬁoi‘ilgn&z k —50
to the corresponding elements on the opposite side.

It is a general rule that in Non-Euclidean Geometries, the
fourth corner of a Lambert Quadrilateral will never be a
right angle (though as 'k' gets very large, or the size of the
figure gets very small, that fourth corner will approach a
limiting value of 90°)

5.0

Horizon 40.0

In Elliptic spaces, the fourth corner will always be
GREATER than a right angle; and the sides adjacent to that
corner will alway have lengths SHORTER than their
opposite sides.

In Hyperbolic Geometries, the fourth corner will always be
LESS than a right angle; and the sides adjacent to that Eﬁzeﬁ“ayean
corner will alway be LONGER than their opposites.

Horizon

Type of Geometry Constant factor

Hyperbolic 50
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If we start dividing our 3-right-angled Lambert DRAWING 45: Diagonals are drawn across both quadrilaterals.
Quadrilaterals into triangles, and we measure the resulting The mid-line is divided into 4 parts, with perpendicular legs.
elements, we find the following:

In Elliptic Geometry, the sum of the angles of a triangle wil
always be GREATER than 180° (the sum of two right
angles).

In Hyperbolic Geometry, the sum of the angles of a triangle
wilLL always be LESS than 180° (the sum of two right

angles). Horizon
But as the value of "k" becomes infinitely large, or the size
of the triangle becomes infinitely small, then the sum of its
angles will approach 180°. Type of Geometry
Elliptic k =50

And as the size of the triangles get larger and larger, the
sum of their three angles departs farther and farther from
180°.

The principle of SIMILARITY does not work in
Non-Euclidean Geometry. Triangles can not be scaled
up-or-down to different sizes without changing the Horizon
measured values of their angles and the proportional lengths
of their sides.

Type of Geometry

Fuclidean

Type of Geometry Constant factor

Hyperbolic 50
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If we copy the four different triangles of Drawing 45, and DRAWING 46: The triangles of Drawing 45 are arranged with
we re-arrange their positions, so that the corners with the the corner of the varying angle all stacked at the same point.
angles that vary are stacked on top of each other, we get a
different view of the triangles (seen here in Drawing 46).

This third angle gets bigger
As in Euclidean space, figures in Non-Euclidean spaces as the triangles get bigger.
are ''rigid". They can be moved around without changing
their properties. We can rotate them, and mirror them,
without changing the lengths of their sides or the angles
measured at their corners; but we can not change their scale.

They are not SIMIL AR with respect to size.

In Hyperbolic space, the bigger a triangles gets, the
smaller the sum of its three angles becomes. In Elliptic
space, the bigger a triangles gets, the larger the sum of its Pes o eomety Constant factor
three angles becomes (up to a limit). Elliptic k=350

This third angle stays the same
as the triangles get bigger.

FF F H
N
—
W

Type of Geometry

Fuclidean

This third angle gets smaller
as the triangles get bigger.

8.54°

Type of Geometry Constant factor

Hyperbolic 50
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If we set up a segment of straight line within the view of
our Perspective camera, we will see that it will always look
smaller in Hyperbolic space, and bigger in Elliptic space.

The lines are set up in all three geometries in precisely the
same manner, at the same distance from the Eye (the
aperture of the camera), turned at the same angle.

In Hyperbolic space, the line will look smaller than i1t does
in Euclidean space. The angle seen from our Eye to the end
points of the line becomes smaller. Just as our Eye sees the
angles of any triangle getting smaller, when we measure
this angle at its point of intersection, it will be measured as
being smaller.

In Elliptic spaces, at short distances, short line segements
will always look larger than in Euclidean space. Elliptic
space in larger scales gets more complicated because every
line is finite in length. A line starting from a point and
moving outward in a straight line will eventually reach the
point where it started.

The perpendiculars we frst drew in Drawing 41 will
eventually intersect, then continue beyond. Whether or not
they intersect once or twice depends on whether the Elliptic
Geometry is assumed to be the "one pole" or the "two pole"
version. This book will only discuss the two pole version
of Elliptic Geometries. As a crude model one can imagine
straight lines being like meridians of Longitude used to map
the Earth, traveling perpendicular to the Equator and
crossing at two poles. In this crude model the Eye would be
the center of the Earth. In Perspective, straight lines of
Elliptic Geometries always circuit completely around the
Eye.

Regardless of how any line is positioned in space, a straight
line will always appear straight, in every Perspective view.
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DRAWING 47: The angle from the Eye to the end-points of any
given line will vary in different types of geometry.

From the Eye
the angle between points A and B is
8.067°

35 (from Eye)

. A
30 (from Eye) 8.067
B }/
10
clgfar

2

The sum of the three angles
of the triangle A-B-Eye is
185.3°

Type of Geometry Constant factor

Elliptic k =40

From the Eye
the angle between points A and B is
7.085°

35 (from Eye)

7.085° A

30 (from Eye) &
B NX

@)

The sum of the three angles
of the triangle A-B-Eye is
180.0°

Type of Geometry

Fuclidean

From the Eye
the angle between points A and B is

6.264°
35 (from Eye)
0 A
30 (from Eye) 6.264 @
B -
The sum of the three angles
of the triangle A-B-Eye is
175.3°
Type of Geometry . Constant factor
Hyperbolic 40
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Mathematically, the "k" factor is a radius. In the literature
of Non-Euclidean Geometry I can find no special name for
it. We might call it the "Radius of Density" for each space.
In the past I've called it the "Radius of Curvature", but
truthfully nothing is curving, so that name is a bit
misleading.

We observe two surveyors, in Drawing 47, to illustrate the
optical appearance of the varying density-of-distance in the
spaces of our three geometries.

The points "A'" and "B'" are set to mark the same visual
angle in all three illustrations. One can see that as space
becomes "less dense'" in the Elliptic Geometry, the figure
appears bigger -- in Hyperbolic Geometry it appears
smaller. The figures are all the same height, positioned at
the same distance, 30 units, from the Eye to the figures (at
point A).

The secondary figures are all set up at the same measured
distance, 50 units, from the Eye of the Perspective observer
to the eyes of the figures (at point "C") and a distance of 9
units perpendicular distance out from the line formed by the
central ray of visual (the point in the center of the picture,
passing through point "A'").

In Elliptic geometry the image of the secondary figure gets
smaller at a slower rate than in Euclidean space. In
Hyperbolic the secondary figures gets smaller at a faster
rate than in the Euclidean view. The farther into the
distance we look, we faster the "density of length" changes.

While the lengths seem to be expanding or compressing
objects, the meaning of length never varies. For the
surveyors looking back at us, their local space seems
"normal", their sizes "normal', while the objects they see in
their distant views appear similarly expanded, or
compressed, by the geometry of their space.
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DRAWING 48: Showing the relative densities of space. ""A"
and ""B'" are set at the same angle in all three views.)

e |
e
"C" at 50 "A'" at 30
Type of.Creorne.try Constant factor
Elliptic k =50
e |
&)
"C" at 50 "A'" at 30
Type of Geot.netry
Euclidean
C
"C" at 50 "A'" at 30
Type of Geometry . Constant factor
Hyperbolic k=50
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The change to the density of space is not merely an optical DRAWING 49: The measured length of the circumference of a

effect, there really is "less space" (less distance) or "more circle changes in Non-Euclidean geometries.
space" (more distance) enclosed within the unchanged
angles.

Here, in Drawing 49, we line up equally sized figures to
form a circle around the Eye of our Perspective observer. A
measuring tape is set at their feet.

In Elliptic Geometry, at a radius of 30 units of length, there

2 3
are fewer figures in our circle, its circumference is less. In
Hyperbolic Geometry, at the same radius of 30, there are
more figures needed to complete the circle -- its
circumference is longer.
o oar e

E T T 5 1760 10
Fypeldf Gédmetry Constant factor

50 Radius=30

Elliptic k

Type of Geometry - _
Euclidean Radius=30

© 7 8 9 10

Type of Geometry Constant factor . —
Hyperbolic k =50 Radius=30
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As the radius of the circle is increased, the variation to the
length of its circumference is amplified. The effect
becomes greater with greater distance.
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DRAWING 50:

The larger the radius of the circle is set, the

greater the proportion of change to its circumference.

250 252

== ===
2 > B
554 256 258 260 262 264, 1 2 910 11 1z 15 5

Type of Geometry Constant factor

Elliptic 50 Radius=50
55 56 57 2 3 4 (

Type of Geometry - o

Fuclidean Radius=50

Iiie}oq;gﬁj)olic Eﬂsm 5t°0 Radius=50
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If we position the Eye of our Perspective observer above,
and look down at a series of concentric circles, Drawing 51
illustrates what will be seen.

(The order of the geometries is reversed on this page, to let
the image of Elliptic circles extend past the arbitrary fixed
edge of the picture plane.)

It can readily be seen by the growing proportion of fully
rendered figures standing in the circles, that the length of
the circumferences are increasing in the Hyperbolic
geometry, and decreasing in the Elliptic space.

Circumference of a Circle

k=50 | Hyperbolic| Euclidean  Elliptic

DRAWING 51: <Concentric circles, seen from above. Lines
show places, while only the additional figures are fully drawn.

9100 6325 | 6283 6241
5 30.0 20001 = 188.50  177.39
500 36920 | 31416 26436
2800 74631 | 502.65  314.03
a? 120.0 1,717.27 753.98 212.20

(312 Figures) (137 Figures) (38 Figures)

Seen from a distance, the Non-Euclidean planes start to
appear warped, or curved. This is an optical effect, the
plane remains totally flat, in the same sense that it is flat in
Euclidean space.

In the chart of Circumferences it should be noted that
after reaching a certain distance, the circumference of
circles in Elliptic spaces start to get smaller, until finally
the radius travels half the finite length of a line and the
circumference becomes a single point. Paradoxically,
though the plane appears to encircle the Eye of the
obserever, it never really curves, but remains perfectly flat.

106.

\i
Type of Gemetry . Constant factor Center at
Hyperbolic k=50 Distance—100
50
30
(e
10
Type of Geon.-netry Center at
Euclidean Distance=100

10
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To construct this Drawing 52, we imagine a flat plane at DRAWING 52: Figures standing on a straight line on a plane,

5 units distance below the Eye, like an infinite flat floor their eyes at the same height as the Perspective observer's.
upon which the Perspective observer stands. At a distance
of 60 units straight out from the Eye, a perpendicular line is Equidistant Curve\[

set upon the flat plane. Standing along this straight line is a 0 R © ' o B I
line of figures, each exactly 5 units apart, with their eyes at "
[ lo
(o)

5 units height.
Straight Line 7

Every possible straight line drawn on the plane will
appear as a straight line on the Perspective picture plane.

Points at the top of the head of each figure are
connected to form a continuous line. In Euclidean space it
is a straight line; in Elliptic space it curves upward; and in
Hyperbolic space it curves downward. These are indeed TR ey P
real curves, called "Equidistant Curves'". No two straight Elliptic k=40
lines in either of our basic Non-Eucliean Geometries can
travel along at the same distant apart (what we call
"Parallel" in Euclidan geometry). The points at an equal
distance to any straight line forms an Equidistant Curve.

Horizon

Horizons are formed at infinite distants in Euclidean and SttréllghtlIf;ni t (a straight line)
a qua 1stan

Hyperbolic geometry. In Euclidean space the Horizonof |~~~ N\
the flat plane appears as a straight line behind the eyes of

the standing row of figures. Despite the plane being flat, in \M /\ A A A A A /\ij
Hyperbolic space the Horizon always appears as a curve, Straight Line
and that curve is one of the important figures in analytical
Hyperbolic Geometry. It has been given various names: the

Boundary Curve, Limiting Curve, the Absolute, Horocycle,

OI’iC C l e - Type of Geou.netry
Y Fuclidean

In Elliptic Geometry there is no Horizon, flat planes
appear to encircle the Eye.

Finally the figures appear to turn. In the Euclidean space
they will all appear to face forward with parallel gazes, but
in Non-Euclidean spaces the figures appear to turn. This is
not purely an optical effect, though the figures remain

standing on the straight line looking outward in a o Horizon
- - - Equidistant Curve (curve called a "Horocycle")
perpendicular direction. TN T
In Elliptic geometry the figures appear to turn inward, A A A A AACAE A A A A

. . . - - L ]S
toward the observer; in Hyperbolic space as the line Straight Line ¢

proceeds toward the edge of the picture plane, the figures S |
appear to turn outward. Hyperbolic = 40
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In Drawing 52 the figures are standing at a fixed
distance from a straight line.

The curving line upon which the feet of the figures are
standing in the Non-Euclidean spaces is an Equidistant
Curve, and the line connecting the tops of their heads is also
an Equidistant Curve. (This incidentally illustrates how
any line equal distance from an Equidistant Curve also
forms another Equidistant Curve.)

All lines in Elliptic geometries have finite lengths. If you
proceed far enough along a straight line in Elliptic space
you return to your point of origin. Optically, in Perspective
views of Elliptic spaces, all straight lines and flat planes
appear to wrap around the Eye of the Observer.

A plane wrapping around the Eye can appear as a precise
sphere when that plane is at one certain distance from the
observer, but for all the other cases, the sphere deforms like
an elastic bubble. We may draw a scaled Euclidean
diagram of the distance of a "section" cut through the
bubble-like surrounding plane, and it looks like this:

125.66=(2*PI*K)/2

At the top this bubble,
the plane stretches
very thin -- objects
appear larger.

Perpendiculars
each 5.0 high

Total Length of any
Straight Line =(2*PI*K)

CAMERA'S
FIELD OF
VIEW

"Distance-Angle Diagram'" of the Perspective -
view of a flat Elliptic planc (k=40)
with perpendicular line segments standing upon it.

The Eye and its picture-window may rotate at its fixed
position without altering the bubble (or perpendiculars).
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DRAWING 53:

Figures of equal height standing at a fixed

distance from a central straight line.

Equidistant
Curves

130

120

110

100
90
80
70
60

50

% Straight Line

30
Type of.Creorne.try Constant factor
Elliptic k=50
Straight Lines
at Equal
Distants Horizon

w ((a straight line)

2 W o
)
) r
(M) }
{ ) %
60
50
;)‘Straight Line
30
Type of Geol.netry
Euclidean
Equidistant
Curves Hori
\\\\\ _ orizon
\\\\w\\ (curve called
a "Horocycle')
4 b ‘ ‘ LD DBr
2
< s %Straight Line
30
Type of Geometry . Constant factor
Hyperbolic 50
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A SHORT DIVERSION ABOUT "HORIZONS"

In the Perspective of Euclidean Geometry an observer at
any elevation above a flat ground plane will see the Horizon
as a straight line at Eye level (and we say that this straight
line is "horizontal"). In theory (if there was no atmospheric
dust or limit to visual acuity) we could see the entire
distance of the surface, stretching infinitely outward.

Young artists are taught to draw this Horizon as a
straight line at Eye level.

In fact though, when you look across a large body of
water you often are not be able to see the opposite shore.
The range of your view is limited by the curvature of the
Earth.

The curvature of the Earth cuts off views of distant
ojects suprisingly quickly. If you stand at a high enough
elevation, at least in theory you can see the curvature of the
Earth's surface. In fact this usually gets obscured by
atmospheric dust or mists.

[Also, there is an optical effect of visual curvature when
straight lines are viewed over wide angles. Perspective is
only deemed '"realistic" only within a cone of vision never
exceeding sixty degrees, but human eyes typically are
seeing a field of view three times wider. If you stand fairly
close to a long flat interior wall and look up at the straight
line along the intersection of the flat wall and a flat ceiling,
you tend to see that straight line as a curve.]

A Hyperbolic plane's curving Horizon reminds me of the
curving Horizon of our round Earth, but we are seeing the
entire Hyperbolic surface, every point along the line of our
vision, extending out to infinity. The Hyperbolic plane is
not curving, there is no part of its surface curling down, out
of our line of sight.
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DRAWING 54: Perspective appearance of Horizons -- for a flat
Euclidean plane and a spherical Earth seen from various heights.

HORIZONS

(... also the theoretical view of a theorectically infinite flat Euclidean
plane -- from any height)

100 meters (~1/3 degree below Horizontal)
1,000 meters (1.1 degrees below Horizontal)
5,000 meters (~2.3 degrees below Horizontal)

AN
\\ O meters (Horizontal Straight Line)

Earth's Radius : 6,371,000 meters

Euclidean (or "k" being very large)

Eye level at 2 meters elevation:
3.1 miles of visibility to Horizon

Eye level at 100 meters elevation:
22.2 miles of visibility to Horizon

Eye level at 1,000 meters elevation:
70.1 miles of visibility to Horizon

Eye level at 5,000 meters elevation:
157.0 miles of visibility to Horizon
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DRAWING 55: Three Lambert Quadrilaterals
set as a cormner: ARRANGEMENT 1.

Trying to set up networks to calculate the Perspective
pictures of Non-Euclidean figures, I discovered that the
corners of right angled figures could fit together in a variety
of different ways. Here are separate illustrations of four
basic arrangements, two shown in Hyperbolic Geometry
and two in Elliptic Geometry.

“f 20

20

HORIZON [
20 20

DRAWING 56: Three Lambert Quadrilaterals
set as a corner: ARRANGEMENT I1.

ARRANGEMENT II is set up in Elliptic space.

The three right angles of the Lambert Quadrilatereal in
the far right is altered so that one of its perpendicular
corners 1s on the outside. The fourth corner, now at the
junction point of the three planes, becomes an angle greater
than 90 degrees, and to keep the edges of the three
qualrilaterals joined, the planes start to rotate.

2200

22 Sm— L 9.24
)] /92.85°

100

90

9.24

20“““ ;;;; 7
3.1 74024
Three equilateral "Lambert Quadrilaterals" Hyperbolic geometry: k=40

Arrangement I -- set perpendicular to each other (three interior right angles meeting)

In this ARRANGEMENT I, three right-angled figures
are set mutually perpendicular to each other, their faces at
right angles.

One can readily see why a system of Cartesian
coordinates can not be constructed in Non-Euclidean space,
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Three equilateral "Lambert Quadrilaterals" Elliptic geometry: k=40
Arrangement II -- Two interior right angles meeting, One exterior right angle

With the four-sided quadrilateral on the left now leaning
outward, we drop down new lines perpendicular to the
ground plane, in order to calculate the positions of its
corners and edges.

The ground plane of Elliptic space encircles up and
around the Eye of the Perspective observer.
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DRAWING 57: Three Lambert Quadrilaterals
set as a cormer: ARRANGEMENT III.

In this third ARRANGEMENT, only the quadrilateral
lying on the ground plane has a right angle in the interior
corner, where the three planes intersect.

I

\ 9.24

80

9.24

70

60

J o7 L -| 557 L P
|
|
|
|
|

cl
T |

50
93.00°

DRAWING 58: Three Lambert Quadrilaterals
set as a corner: ARRANGEMENT 1IV.

ARRANGMENT 1V is set in Hyperbolic space.
Opposite to Elliptic geometry, now the fourth angle of the
quadrilateral is always less than 90 degrees. In this
arrangment, all the corners at the interior intersection are
non-perpendicular, so the figures all lean inward, toward
one another.

17.83

17.83

17.83

o
E

Three equilateral "Lambert Quadrilaterals" Elliptic geometry: k=40
Arrangement IIT -- One interior angle. Two exterior right angles.

The ground plane of Elliptic space encircles up and around
the Eye of the Perspective observer.
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HORIZON ;
FINREN W
20| —_— 20
76.67 RS 2 s
17.83
Three equilateral "Lambert Quadrilaterals" Hyperbolic geometry: k=40

Arrangement IV -- All right angles on exterior corners
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Non-Euclidean regular polyhedrons look very much like
their Euclidean versions. It is both a bit surprising and
perhaps a bit dissappointing.

I can think of no reason to believe there could be any
additional Non-Euclidean "regular solids".

Non-Euclidean regular polyhedrons share much with the
Euclidean versions. Each has straight lines of equal length
for edges. Each has flat surface faces, matching in size and
geometry (congruent to each other) all around the
polyhedron. A line from the center of polyhedron to the
center of each face consistently forms a right angle; and a
line from the midpoint of each edge to the center of the
polyhderon also consistently forms a right angle.

I
Elliptic— |

H O I
|
|

Euclidean \
/N U
Hyperbolic— | B “\ J

The polyhedrons of the three different geometries tend to
look identical (except for a slight difference in size), but
actually they are not. There are slight differences in the
"rate of foreshortening" of the three Perspective images (as
seen in the Cube, above).

And when we examine the angles and dimensions of the
Polyhedrons themselves, we see that each of the
Non-Euclidean solids is very different from its Euclidean
version.
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DRAWING 59: The five regular polyhedrons
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DRAWING 60: A six-sided regular polyhedron, a Cube, in
Hyperbolic space.

Two studies of the same cube -- one with measurements,
and a second with a crew of surveyors holding measuing
rods precisely perpendicular to the flat plane on which the
flat bottom face of the cube stands.

DRAWING 61:

The same Cube, with surveyors.
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Type of Geometry

Hyperbolic

Constant factor
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DRAWING 62: Four regular cubes set with faces adjoining.

When we try to nest multiple regular Non-Euclidean
polyhedrons together we discover how different the spaces
of different geometries have made them.

Type of Geometry Constant factor

Hyperbolic k=40

There is a famous instance where one specific size of
regular duodecahedrons form precisely perpendicular angles
and can be packed in an infinite continuous array (similar to
cubes in Euclidean space).
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DRAWING 63: The same cubes viewed from a different angle.

Here, the Eye of the Perspective observer is set up to

look directly down the single straight edge line common to
all four cubes.

Type of Geometry Constant factor

Hyperbolic k=40

In all geometries a Perspective view precisely down the
end of straight line segment is a point; and the view
precisely along the edge of a flat plane is a straight line.

123.




The Perspective Eye views a flat plane marked with a DRAWING 64: Perpendicular line segments of various lengths
series of concentric circles starting from a center point standing on a flat plane, viewed from various heights and angles
defined by the line drawn from the Eye meeting the plane at
precisely a right angle. Along the circles are perpendicular
uprights of various heights.

For the Euclidean plane, a "distance-diagram'" showing I — B
the various positions of the plane looks like this:
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For the Elliptic plane the "distance-diagram" looks - ~——= —
similar to the elastic bubbles seen in Drawing 40 (page 84), VA DR I i L st

. . N U
the Eye rotating to the various angles used here. / [ S
A Voo A
In all three Geometries, the "vanishing point" for lines I 7 J o RN A
perpendicular to a plane is the point on the Perspective VN T Y
picture-plane (inside or outside the picture frame) made by A N f N
the projection of the solitary perpendicular from the given Elliptic k=50 QUGS ' Buclidean Riveneeopime: 100 Hyperbolic k=50 Diuaneq s plane: 100

plane passing through the Eye.
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Where two planes intersect the points along their
intersection form a straight line. This is true in Hyerbolic
and Elliptic Geometries as well as Euclidean.

Perspective images may be spun around the central light of
sight (the line perpendicular to the picture-plane passing
through the Eye). If we rotate the construction of the
object viewed, its image will not change except to rotate
around the center of our picture plane.

For example we take our first Hyperbolic plane, and it's
rotatation with respect to the Central Ray of Vision is a
simple rotation of the picture image.

Distance to Plane: 5 Rotated The Two Planes /
Angle: -90 degrees 70 degrees Intersecting
l o
P ] ;
L o
Hyperbolic k= 50 H bolic k=50 Hyperbollc k= SO

Combining the two planes together, their intersection
forms a straight line.

If we relocated the two intersecting planes so that our
Eye looked exactly down the straight line of their
intersection we would see the intersecting line as a single
point, and the plane as straight lines. (In Elliptic Geometry
the plane technically encircles the Eye, on both sides, but
what small portion is not within the line of the plane is so
far away, and stretched so thin, that it is practically
invisible.)

IW llo.ﬁ IW

/ / /

Elliptic k= 50 Euclidean Hyperbolic k= 50

Because the planes have been set up according to an angle
made by the perpendicular-to-the -Eye, their intersection
angles vary slightly (between the three geometries).

126.

DRAWING 65: 'Two planes intersecting from a straight line and

a uniform angle between the planes all along that line.
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This Chapter's final series of drawings will analyze, in DRAWING 66: 'Tiling" of equalateral triangles fitted together

detail, the Perspective apearance of flat planes viewed in a on a flat plane viewed in a perpendicular manner.
straight-forward perpendicular manner. - ~ No edges
/ AN may be
. . . / AN seen
In any of our three geometries, equilateral triangles can / \8
fit together into close-packed '"tilings'. In Euclidean space / \

six identical equilateral triangles can fit together at one / \

corner. In Non-Euclidean spaces similar tilings of |

equilateral triangles are possible only at a certain side length | ®o
for a certain value of "k'". In Elliptic Geometry five \

equilateral triaangles with a side length of 22 work for a
value of "k", almost equal to the "k" value in Hyperbolic y,
geometry where seven equilateral triangles of the same 22 /
unit side length fit together in close-packed 'tiling".

Type of Geometry Constant factor Distance to the Plane

Elliptic k= 39.74173 z = 80
Viewed at the same distance as the other two geometries,

the five-equilateral-triangle-tiling of Elliptic space i1s so big \24
that we can not see an edge, and even in Euclidean space a
single triangle is too big to fit entirely within the view of
our camera's Eye. But in Hyperbolic space this same setup
shows the full width of the infinite plane, with 7-triangles
meeting in corners dissappearing quickly into the distance.

Type of Geometry Distance to the Plane

Euclidean z = 80

A D N 5 7,
\ \*":'» N > - /'\'/f\

Type of Geometry Constant factor Distance to the Plane

Hyperbolic k= 40.34663 z = 80

128. 129.




DRAWING 67: Distance Diagram (graphed in a Euclidean
space) showing the Eye, Perspective picture-plane, and a

Euclidean plane with a tiling of equilateral triangles, a few of the
rcles, and a few perpendiculars (with bubbles at five

concentric ci
units apart).
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DRAWING 68: The Perspective image of the Euclidean plane
viewed in a perpendicular manner, showing a tiling of

equilateral triangles, concentric circles, and various figures
holding perpendi ula r flags 20 units high.

Type of Geoznetry
Euclidean
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DRAWING 70: Perspective image of an Elliptic plane viewed in
a perpendicular manner, showi a tiling of equilateral
triangles, concentric circles, an rpendicular figures.

DRAWING 69: ''Distance diagram' (graphed in Euclidean
space) showing two aspects of the Elliptic Plane of Drawing 70.
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DRAWING 71: ''Distance Diagram' (graphed in Euclidean

space) showing two aspects of the Perspective setup viewing a
Hyperbolic Plane (the view of Drawing 72).

: : : : Di
Euclidean "Distance Diagram' of the Hyerpbolic toli){a;fee: 30
plane with Concenetric Circles and Perpendiculars

DRAWING 72: Perspective image of a Hyperbolic plane viewed
in a perpendicular manner, showing a tiling of equilateral

triangles, concentric circles, and perpendicular figures (holding
flags 20 units in height).

Type of Geometry

Euclidean "Distance Diagram" of the Hyperbolic gi;tf:;cee_go
plane with tiling of equilateral triangles )
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Constant factor

Hyperbolic k= 40.34663 R
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