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Chapter 1:
Getting Ready




2nd June 2013

To: Christopher Grubbs
Member of the American Society of Architectural Illustrators
San Francisco, California; USA

Hi Chris. At last, I'm sending these first three chapters. I hope to
carry you safely across the borders of conventional logic, and show
you the basic optical sights in the strange foreign spaces of
Non-Euclidean Geometry. Please tell me which aspects of this tour
you like, and which I might improve for future tourists.

You are going to have to trust my text with respect to mathematical
method and measurement. Equations and formal proofs are omitted.
My Perspective images are computer-generated, using exact data.
This text also includes a few "diagrams', which are not Perspective
constructions.

This text uses "Non-FEuclidean' to refer to geometries which alter the
"Fifth Postulate" of Euclid's ELEMENTS. Due to the 5th Postulate
we are accustomed to believing that when two perpendiculars are
drawn from a base line (on a single plane), those two perpendicular
lines will proceed outward at equal distances from each other, even
if extended indefinitely. Non-Euclidean logic changes the Postulate
and proposes that:

e the two perpendiculars converge (and eventually intersect); or,

e they diverge; or,

e their distance varies from place to place, or from case to case.

This tour is merely introductory, so we shall examine only the first
two alternatives.

When the perpendicular lines converge, the new spatial logic is
called Elliptic Geometry. When they diverge, we call it Hyperbolic
Geometry.

Incidentally: In all three geometries we continue to use Euclid's definitions: When a
straight line makes adjacent angles equal to one another, each of those equal angles is
called a right angle (measured as "90 degrees” or " Pi /2 radians’), and the straight line
standing on the other is called a perpendicular to that on which it stands. Euclid's 4th
postulate assumes: '"thar all right angles will be equal to one another’”, an assumption
which seems to establish consistent values for angles. This 4th postulate, and our familiar
angular meanings, is maintained in all the geometries of this text. In my illustrations, a
perpendicular angle is marked by a little square ( |[])-

Let's begin.

DRAWING 1I: Diagram of our 3 alternate postulates

When two straight lines are drawn mutually perpendicular to a third,
as they proceed outward their distant from each other shall:

-
CONVERGE

=/A =

When this assumption is made, it is called ELLIPTIC GEOMETRY.

]

=l/A

REMAIN EQUAL

A

This is the traditional postulate of EUCLIDEAN GEOMETRY.

] \/
DIVERGE

_I/\ /N

Making this assumption is called HYPERBOLIC GEOMETRY.




Principle #1: Within relatively small regions of space,
Non-Euclidean Geometries are approximately
Euclidean. At an infinitesimal dimension (at apoint)
Non-Euclidean rules devolve to Euclidean character.

I think it's helpful to distinguish between "Adpproximately
Fuclidean'" and "Precisely Euclidean'. In approximately
Euclidean space the accuracy of measurements is limited,
but they conform to Euclidean principles. If we improved
the accuracy of our measurements by extending outward, to
survey longer distances or by acquiring surveying
instruments of finer calibration, it is possible that we would
discover that our Approximately Euclidean region was
actually only a small part of either an Elliptic or Hyperbolic
space. Precisely Euclidean, on the other hand, presumes
that it will always be strictly Euclidean, even under scrutiny
of infinite accuracy. But measurement is inherently limited,
so to prove that a space is precisely Euclidean is impossible.
For a space to be considered precisely Euclidean requires a
logical assumption, the 5th Postulate.

By this line of reasoning, you may assume that you already
live in a Non-Euclidean universe and that you've been
looking at Non-Euclidean Perspectives all your life. Planet
Earth is too small for us to measure whether the larger
cosmos is actually Elliptic or Hyperbolic. All we know is
that our measurements seem Approximately Euclidean. In
Approximately Euclidean regions perspective images are,
for all practical purposes, identical and interchangeable.

If such subtle word distinctions seem like nothing more
than silly semantics, fear not, because we are next going to
use this principle as the passport for our imaginary journey
-- 1t will provide the logic of a realistic Perspective "picture
plane".

From here forward in this text, for the sake of brevity, I will
use the word Euclidean to mean Precisely EFuclidean, and

Approximately Fuclidean will keep its longer name.

Next, I will try to define for you our Perspective apparatus.

DRAWING 2: '""Approximately Euclidean'" space —-

Three perspective views, where the size of the region of space
viewed may be considered as relatively infinitesimal.

Type of Geometry Constant factor

Elliptic k = very large compared

to the size of the region

Type of Geometry

Euclidean

Type of Geometry Constant factor

Hyp erbolic k = very large compared

to the size of the region
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Our Perspective apparatus:

Several methods could provide Perspective views of
Non-Euclidean Geometries on approximately Euclidean
surfaces. The simplest imagines a vast space, far away, in
which we build astronomically large geometric figures. We
adopt the logical assumption that light travels in straight
lines. We position our Eye directly in front of a window.
Our Perspective drawing is the collection of points where
light rays intersect that transparent plane. Our picture plane
will not deform (to any perceptible manner) when we
switch postulates from precisely Euclidean to Elliptic, or to
Hyperbolic. Of course, switching the gecometry of the
universe is purely hypothetical.

The adjacent diagram shows our Perspective apparatus.
A central line of sight is set perpendicular to a flat
picture-plane. This as the basic geometrical setup of
traditional Italian Renaissance Perspective art. It's shortest
formal name is: gromonic projection. Let me jump ahead
and reveal a significant conclusion:

Principle #2: Straight lines always appear straight in
gnomonic Perspective.

This remains true whether our geometry is Elliptic,
Euclidean, or Hyperbolic. Other perspective formats exist,
though seen less often. None renders all straight lines as
straight. Surprisingly, whether the human eye sees straight
lines as straight is a subject of academic discussion, a minor
but ancient controversy. Let us proceed by means of the
traditional gnomonic Perspective method, the universal
picture-making format now employed worldwide.

So, we now adopt the gnomonic Perspective format, as
diagrammed here. We will call simply "Perspective".
Straight lines will appear straight. Until our Perspective
apparatus is reconsidered, my language may become
somewhat loose as I permit myself to speak as if the images
of Perspective drawing, human vision, pinhole photography,
and the camera-obscura were all identical, equivalent, and
interchangeable.

Hereafter, in this text, the word Zine will be used to
mean straight line, and curve denotes a non-straight line.

7.

DRAWING 3: Diagram showing our Perspective-making format

CENTRAL LINE OF SIGHT:

Also known as:

"the center of the cone of vision",
or "the central ray", etc.

is a straight line

from the Eye perpendicular to
the center of our picture-plane

OBJECT:

Astronomically

large geometric figures
very far away

compared to

the size of our picture plane
and eye (not drawn to
scale here). Our objects
are built originating

from point "O" at the end
of our central

line of sight.

— PICTURE-PLANE:

Also known as:

EYE:

Also known as: "the station point",
"the observer", or "point of view",

(a camera's "aperture" or "pinhole").

Our "Eye" is a single mathematical
point, located 22 inches (=56 cm)
from the transparent picture-plane

as the "view window",

the "drawing surface',

or the "image veil"

is a transparent flat rectangle
9 inches x 18 inches in size
(=23 cm x ~46 cm)




Chapter 2:

The Saccheri Quadrilatereal
and
Image Size




The oldest figure in Non-Euclidean Geometry is called DRAWING 4: Perspective views of a Saccheri Quadrilateral
the Saccheri Quadrilateral. We build ours thus: far
beyond our Perspective picture-plane, we establish a new C 7~42LJ7-42 D
figure plane perpendicular to our central line of sight. The &f ° | 90.6°
point where the central line of sight meets this plane we call
"O" ("origin"). From "O" we construct on the figure-plane a
base line AB. From that base line we raise two equal
perpendiculars , AC and BD. Their ends are then connected s 0] 7.5 (]

: : . A———"""B
with a top line, CD. We ask: for each of our three alternate O
versions of the Sth Postulate, what happens to the length of
top line, CD, and to the new interior angles at C and D?

15.0
15.04

Please notice that in Elliptic space the length of the top line,
CD, is measured as being shorter than base line, AB, below.
This conforms to our postulate for Elliptic Geometry, that Type of Geometry Constant factor Distance to the Plane

two such perpendiculars will converge. Likewise Euclidean Elliptic k 100 z =100
space shows the length of line CD equal to AB, and the

Hyperbolic Perspective notes that top line CD is longer than C 75 75 D

base line AB. Our measurements match our assumptions. %}Jﬁ)@

But in all three Perspective images, the length of the top - 2

line remains visually equal to the length of the base below. v “ “

The explanation I use is: in Elliptic Perspective, as we

build outward, space appears to stretch. As space becomes ALz zsl g

less dense, distance seems to inflate and measuring units

appear longer. Since the top line, CD, is built farther away
from origin "O" than the base line AB, its measurement
appears elongated -- the space appears stretched.

For the opposite axiomatic assumption, my explanation then Fypeor Geomeiy TR T e e
reverses: In Hyperbolic Perspective, as we build outward, Euclidean z =100
space appears to grow ever denser. The paradox is that
while Elliptic space appears to be stretching, and

Hyperbolic space appears to be compressing, our measuring C 758 758 D
rulers are unaltered. The difficult concept to explain is that y;@ggﬁ
the space is simply decreasing, or increasing, in quantity. o 8§ o
a4«
This probably seems strange and confusing. You need to see [ 7o [ 17.o
] . A B
more images. Let us push onward. You may then rethink O
this explanation.
The obvious difference between these three images is their
size. Let us next focus on that.
Type of Geometry . Constant factor Distance to the Plane
Hyperbolic k=100 z =100
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Principle #3: When viewed at equal distances, any given
length will appear larger in Elliptic, and smaller in
Hyperbolic, than in Euclidean space.

Since our hypothetical universe is consistently either
Elliptic, Euclidean, or Hyperbolic, we can use the
accompanying three Perspective images as scaled "section
views'" of our Perspective apparatus. At equivalent
conditions Perspective images in Elliptic space will always
appear smaller than in Euclidean space, and Perspective
images in Hyperbolic Geometry will always fill smaller
angles of view than in Euclidean space.

You may perhaps recall a Euclidean theorem that says the
sum of the angles of any triangle equals two right triangles
(180°). That rule is valid only in Euclidean Geometry. In
Elliptic Geometry, the sum of the interior angles of a
triangle will always be more than 180° and in Hyperbolic
space a triangle's interior angles always have a sum /ess
than 180°. Our Perspectives in Drawing 5 are consistent
with these rules .

12.

DRAWING 5: Perspective views of a triangle.

(The Eye in these illustrations is merely diagrammatical.)

B
26.795°
=}
—
O 20 A
Type of.Geonqe.try Constant factor Distance to the Plane
Elliptic 100 z =100
B
26.565°
o
—
20
O A
Type of Geol.netry Distance to the Plane
Euclidean z =100
B
26.337°
=
—
20
O A
Type of Geometry . Constant factor Distance to the Plane
Hyperbolic 100 z =100
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Please permit me to extend the triangles.

When we double the lengths of both legs adjacent to the

right angle, then:

-- in Elliptic geometry, the angles at the remaining two
corners become larger and larger;

-- in Euclidean Geometry, the angles of the remaining two
corners stay equal; while

-- in Hyperbolic Geometry, the angles become smaller and
smaller.

There is a principle in Euclidean Geometry of similar
triangles, that triangles with equally proportioned sides will
consequently have equal angles, regardless of size. That
notion of similar figures is invalid in Elliptic and
Hyperbolic Geometries.

Drawing 6 makes a pretty good illustration of my
explanation. Compared to our familiar Euclidean world, as
we build outward in Elliptic Geometry, the space appears
to be becoming less dense (so lengths seem to expand and
their angles of view increase), while in a Hyperbolic
universe, space appears to be growing ever denser (so
image sizes appear compressed and the angles within
which they are viewed decrease).

Let me next explain the "K' factor.

14.

DRAWING 6: Perspective views of extending triangles.

O AT © A2 T A3

Type of Geometry

Constant factor Distance to the Plane

Elliptic k 100 z =100
B3
" 26.565°
6.565°
O 10 Al ©AD A3
Eucldiean hz =100
O TPAIDPA2T A3
fiyperbolic k=100 %2160
15.




Reducing the value of the ""k'' factor by half, the previous
Perspectives of Drawing 6 now appear in Drawing 7.

"K" is a numerical constant regulating the rate at which
the distances between two perpendiculars of our
Non-FEuclidean postulates will converge, or diverge.
Those rates increase as the number'’k" decreases.

Here, in Drawing 7 1 have cut the "k" factor to half of its
value for Drawing 6. In the resulting views, please note
that the measurements of lengths and angles has been
altered; and the size of the Perspective images of the
Non-Euclidean figures has been changed.

There is no "k" factor in Euclidean Geometry.

The rate of convergence or divergence is described by this
constant named "k". In this text we will consider conditions
where there is only one "k" factor throughout any Elliptic,
or a Hyperbolic, universe. But since there are infinite
possible values of "k", both Elliptic and Hyperbolic
Geometries are actually families having an infinite number
of possible members. Each individual geometry will have
its own unique "k" factor.

Beyond the scope of this text, it is here noted that it is
possible for a single Elliptic or Hyperbolic space to vary the
values of "k" from place to place, or case to case, without
violating its version of the 5th Postulate. For the remainder
of this text, however, for the sake of introductory simplicity,
we will assume that our spaces are homogeneous and
consistent, with the same "k'" value at every point.
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DRAWING 7: Perspective —- varying the factor "k"''. B2

O oAl 1o A2
Type of.Georne.try Constant factor Distance to the Plane
Elliptic k=50 z =100
26.5655
O AT MA2 TA3 A4
Type of Geot.netry Distance to the Plane
Euclidean z =100
Type of Geometry . Constant factor Distance to the Plane
Hyperbolic k=50 z =100
17.




Let me return now to our first Perspective, Drawing 4, DRAWING 8: Perspectives of extended Saccheri Quadrilaterals
which introduced the Saccheri Quadrilateral, and show how
it appears extended outward in multiples of lengths.
Non-Euclidean quadrilaterals can have right angles at
three of their interior corners, but never at all four. A u 12 Ci e <2
"Squares" and "rectangles" therefore exist only in Euclidean < 90-6/3%1: 91;2%:
Geometry. Quadrilaterals with four .equal sides are possible % 1504 % 1504 fi
in Non-Euclidean Geometry and their corners would have o] ] e
four equal angles, but those equal angles could never be 2 90.64° g 01275902
exact right angles. H 15 \ﬁ@ 15 \ﬁ
B D1 D2
It 1s therefore impossible to fabricate a Carresian
coordinate system in any Non-Euclidean Geometry.
Type of Geometry Constant factor Distance to the Plane
Elliptic k=100 z =100
A 15 C1 15 Cc2 15 Cc3
] [] [] []
N o N N
] 15 [] 15 [] 15 [
. el N l L]
Comments regarding Pages 20 and 21 (ahead): 3 i N N
The next pair of pages show a Sacherri Quadrilateral 1 15 [ 1s [ 15 ]
moved around on its figure-plane. The first illustrations B bt b2 b3
(Drawing 9) use k=100, and the second (Drawing 10)
reduces "k" to 50.
The shape of the visual image is altered merely by the L - —
figure's position on the plane. I imagine that you may find EFuclidean = =100
this rather disconcerting.
Please notice that the quantitative character of the
Quadrilateral is unaltered. The figure remains rigid:
neither the length of its sides, nor the measure of its angles,
is changing. Only the shape of our visual Perspective R . <, ¢z . c3 . ca
changes as the figure slides around. < 89‘3%3 88.6;‘%; 88-0§N§87-2§N§
9 o) W
. . I'e) —‘ 14.96 ’7& 14.95 r\o 14.94 ’7’- 14.93 ’700
Chapter 3 will next examine the figure-plane as a whole, o L LN L o
. . . . . N 89.3529  88.6923%  8g8.05>1Y 87.27°9%
and explain these peculiar visual characteristics. N f? B s ﬁ s f = s f? x
D1 D2 D3 D4
Type of Geometry . Constant factor Distance to the Plane
Hyperbolic k=100 z =100
18. 19.




DRAWING 9: A Saccheri Quadrilateral
sliding around on the figure plane, k=100.

14.82

14.82 &24° 9;&%
%4° 90?%{>
a 2
]
n —l14.82
90,64° 90:64°
[ | 15 [ ]
1 15 [] 14.82
[g) v
14.82 - o %45 90?2%
90.64° Qﬁg
|1 15 [] n
sl —
el
v [g)
— —
|| 15 ||
Al 5 ’7 Constant factor Distance to the Plane
T G 38 R J—
Flliotic k=100 z =100
1ptic
15
Is ] L]
] L]
gl
-
v
) 2 15 -
- ] L]
" | ] 15 []
—
[ 15 [] 15
s Y ]
] L]
[l 15 [ ] "
Up) —
v ) —
— Ll
il 15 ]
[ 1 15 []
Type of Geometry Distance to the Plane
Euclidean z =100
15.17
89.35°89.39°
v gl
— —
1517
89.359 1 15 [
b 15.17
89 35°
SQVEQ
’7
" A
—
[l s
Type of Geometry Constant factor Distance to the Plane

Hyperbolic k

= 100
20.

z =100

15

14.33
92/56°
92%
DRAWING 10: bl
... the same,
but with k = 50
2 E 14.33
&2@ 9/;%
L1
T 15 f 14.33
2

14.33
92.56°

v
—

ol e

—‘ 15

n
-

Type of Geometry

Ellipti

15

Constgnt factor Distance to the Plane

k= 50 z =100

15
Is [T []
[ ] L] 15
g}
0 - 0
g} - 15
15 — J L
|| 15 []
[1 15 ] -
s 2 ol oL
[ ] [ ]
[l 15 || "
n 0 -
[1 15 []
[ ] 15 []

Type of Geometry

Fuclidean

Distance to the Plane

z =100

Type of Geometry

Hyperbolic

Distance to the Plane

z =100

Constant factor

k =50
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Chapter 3:

The Appearance of
Non-Euclidean Planes

22.




In this chapter we examine the visual character of
Perspective illustrations of a Non-Euclidean p/ane (a flat
surface,which lies evenly with the straight upon itself). As
before, we establish a plane at right angles to our central
central line of sight, with the central ray of vision striking
that plane at point "O" , located distance "Z" from the Eye.
From point "O" this plane extends perpendicularly outward
endlessly in all directions.

Since a Cartesian grid of squares is impossible to build
in any Non-Euclidean space, I struck upon the idea of
spinning a series of concentric circles to fill the plane. They
are fast to draw - simply compute each radius and spin it
full circle around point "O".

The next five pages are Perspective views of such a plane,
using five values of ""k’’. (k = 1,000, 240, 100, 50 , and 33)

Explanation of annotation numbers:

R = Radius

C = Circumference

A = Area
"R" 1s a percentage of "Z"', the perpendicular distance from
our Eye to "O". (For example "R=20" means that this
particular circle has a radius equal to 20% of "Z"). "C" is
also a length; and "A" is a square-unit value of lengths,
measuring area.

We started with an assumption that "Z" is "far away",
and that these circles would "astronomically large" in size
(compared to the size of our picture-plane and local viewing
environment); but since we are dealing with only a single
point as our Eye we may keep our geometry purely
proportional in scale and need not necessarily specify any
exact unit of length for our hypothetical distances.

Our discussion will continue after the next five drawings.
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DRAWING 11:

Perspective views of a plane with & = 1,000.

Type of Geometry Constant factor Distance to the Plane

Elliptic k

1,000 z =100

R=/30

Type of Geometry Distance to the Plane

Fuclidean z =100

Type of Geometry Constant factor Distance to the Plane

Hyperbolic k

1,000 z =100
24.




DRAWING 12:

Perspective views of a plane with & = 240.

R =X0

30
Type of.Geome.try Constant factor Distance to the Plane
Elliptic 240 z =100

5.7
56.6
R+ 30
Type of Geoinetry Distance to the Plane
Euclidean z =100
R =X0
.8
257.4
R# 30
Type of Geometry Constant factor Distance to the Plane
Hyperbolic k = 240 z =100

25.

DRAWING 13:

Perspective views of a plane with & = 100.

R=/30
Type of.Geolne.try Constant factor Distance to the Plane
Elliptic k=100 z =100

R= 30
Type of Geon.netry Distance to the Plane
Euclidean z =100
RXx40
.5
0.8
30

R;éso

Type of Geometry Constant factor Distance to the Plane

Hyperbolic

k=100 z =100
26.




DRAWING 14: Perspective views of a plane with k = 50.

DRAWING 15:

Perspective views of a plane with &k = 33.

R =20
C=12223
A =1,240.0

R=\15
R=10
5

Type of Geometry

Elliptic

Constant factor

Distance to the Plane

50 z =100

Type of Geometry

Fuclidean

Distance to the Plane

z =100

Horizon
> forms at
R=~200

Type of Geometry

Hyperbolic

Constant factor

k
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Distance to the Plane

50 z =100

Type of Geometry

Elliptic

Constant factor

k=33

Distance to the Plane

z =100

Type of Geometry

Fuclidean

Distance to the Plane

z =100

Type of Geometry

Hyperbolic

Constant factor

k=33
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With the "k factor" at 1,000, the Elliptic and Hyperbolic DRAWING 16: Diagram of the distances from Eye to plane
Geometries in Drawing 11 are Approximately Euclidean.
As the "k factor" decreases Non-Euclidean effects become \
apparent. The Elliptic space appears to be stretching out \
around our eye; the Hyperbolic space looks as if it were \
curving away from us. At k=50 our Perspective apparatus \
sees across the entire span of an infinite Hyperbolic plane. \

Drawing 16 is a diagram of the actual measured \
distances from the Eye to various radius points on the plane.
The paradox is that though those distances would tell us in
Euclidean Geometry that the plane is curving, yet the
Non-Euclidean planes remain perfectly flat. "Curving" is
only an optical effect, and a somewhat misleading term.
Better terminology might say that the Elliptic plane is
converging toward our picture-plane and the Hyperbolic

plane is diverging away from our picture-plane. 50
In terms of our original assumptions, we are seeing this: \ 40 20 20
EUCLIDKEAN . ”
N o A\

50 30

\ /
\ / Distance between the 2 mutually

\—/ perpendicular planes is:
/ Converging (Elliptic),

=100

N

\\ // Remaining Equal (Eucl/idean), or \ g

- . . \ <

\ |/ Diverging (Hyperbolic) \ =

\|/ \ 2

TED> . :

The shapes of figures on a flat plane of Non-Euclidean \ z
Geometry appear to change as they slide around because \ &
what the Eye sees is similar to viewing portions of those \\ §
figures turned at various angles in Euclidean space. The \ g
converging, and diverging, planes give a visual impression \ b=
similar to Perspective "foreshortening'" in our usual \ 3
Euclidean views. \ E
The central region of all our planes, the point where our \\ &
line of sight is perpendicular, appears Approximately \ E
Euclidean, and angles appear true to their measure at point \
"O". But moving outward from that center-point, figures 44.5° KU

and distances appear distorted, as if we were rotating the
figure in a Euclidean space.

P
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The primary concept is that Non-Euclidean Geometries
are changing the overall quantity of space. Elliptic
Geometry is subtracting space, while Hyperbolic Geometry
is adding space (compared to Euclidean).

At close range, the proportion of space subtracted or
added i1s very small, and virtually immeasurable; but farther
out, the quantities of volume being systematically
subtracted from Elliptic space, or added to Hyperbolic
space, become larger and larger.
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DRAWING 17:

Diagram comparing spherical surface areas

When we compare spherical surface areas, it is evident
that the quantity of space is decreasing in Elliptic Geometry,
and increasing in Hyperbolic .

ELLIPTIC
Spherical Surface Area
k =100
Percentage of Euclidean

RADIUS
of the Sphere
Z =)

HYPERBOLIC
Spherical Surface Area
k =100
Percentage of Euclidean

100%6

1

100%%6

92%6

50

109%6

71% 100 138%%6
60% 120 158
-~ 1a0 185

39%

160

220

29%

180

267

21%

200
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It is paradoxical to us that the planes of Non-Euclidean
Geometry appear curved but are actually completely flat. It
truly is a whole new type of space. To show you how flat it
really is, in Drawing 18 the plane is slowly rotated, turning
about point "O", into an edge-on view.

In Hyperbolic Geometry we may call the circular outside
rim the Horizon, the Hyperbolic plane infinitely receding.
It is interesting to note that as the Hyperbolic plane rotates,
that the Horizon stays intact. No portion of the planar
surface ever ""curves'" outside our line of view. The entire
expanse of the Hyperbolic plane (within the bounds of the
picture frame) always remains visible.

33.

DRAWING 18: Perspective views of a rotating plane
(Equally angled radial lines have been added
to enhance visual clarity.)

ELLIPTIC EUCLIDEAN

67.5°

90° 90° 90°
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A view of a flat Hyperbolic plane with its circular Horizon
serves as good symbolic representation for Hyperbolic
Geometry. Straight lines appear straight. The central
region is Approximately Euclidean in character and
appearance, while as we move away from its center the
outlying regions grows ever denser, the image of figures
moving outward appearing ever smaller. Outer limits
recede infinitely in every direction.

In Drawing 19 1've taken the concentric circles of Drawing
I/4 and scattered upon it equally long line segments set
perpendicular to the plane (each perpendicular articulated
with four equally spaced points). 1 think that these
perpendicular elements help to visual the receding
appearance of the diverging Hyperbolic plane and the
concave illusion of the converging Elliptic plane. It helps
to understand that the outer regions of the Hyperbolic
Geometry's flat plane appear smaller because they are seen
in foreshortened Perspective (rather than thinking that they
are growing dimensionally smaller). Likewise for the
Elliptic Geometry's flat plane, the concave aspect of its
Perspective helps to understand the magnification of
peripheral regions.

Chris: This is the "best" image set I've come up with ( so
far); and I would like to propose that you consider creating
detailed renderings showing an imaginery aerial view of an
urban towncape using this set. A square picture frame
might work better. I would need to continue development
of such a display -- to compute streets and building frames.
A method will need to be invented that can illustrate the
subtraction and addition of quantites of space (perhaps
additional landscaping appearing in the Hyperbolic view,
while conspicuous buildings disappeared from the Elliptic
Perspective?) I envision something vaguely similar to
Grant Wood's painting "7he Midnight Ride of Paul Revere"”
-- a sort of Norman Rockwell small colonial-style
townscape.
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DRAWING 19: Adding perpendiculars to the view of a
(similar to W on page 27)
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DRAWING 20: Perspectives of a plane filled with perpendicular

In Drawing 20 the view of Drawing 14 is repeated, again, lines and Equidistant Curves
but here the concentric circles are replaced by a pair of
perpendicular main axes joined at point "O". Various
secondary perpendicular lines are then cast off from each R _ -+ I D 1
main axis with regular spacing. (Perpendiculars cast from
any line passing through point "O" will appear as a right
angle in the Perspective images of any of our three
geometries.) 0
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11
11
==
LT
LT
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In Drawing 20 there are also added Equidistant Curves,
curves whose distance of separation constantly equals the —————— =E ————1
distance between the perpendiculars at their construction ! f | 1
points along the main axes. In Euclidean Geometry these / ‘ \

. . . I I | |
sets of points form parallel straight lines and get Type of Geometry Constant factor Distance (o the Plane

superimposed on the adjacent perpendiculars; but in Elliptic k=50 z =100
Non-Euclidean Geometry they form separate curves, shown
here dashed. The Equidistant Curves illustrate the rate at 1
which the perpendicular lines of Non-Euclidean Geometries
converge or diverge. T
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As this chapter's final set of perspectives, Drawing 21
lays down flat the previous plane, with its network of
perpendiculars and Equidistant Curves (Drawing 20) and
shows how it looks with our Eye looking out across its
surface.

The diagram of this set-up is: -

— Distances between the
_— mutually perpendicular
Eye - lines of the central ray of
@( —  central ray of vision vision and the main axis on
T — the plane below are:

—— Converging (Elliptic),
— Remaining Equal (Fuclidean),
—— or Diverging (Hyperbolic)

—_

5.000
/

—_

a main axis, on the plane —

—

The human figures are added as perpendiculars and to
show relative scale between the various views. They are
purely diagrammic in detail. They violate our assumption
of astromonical scale, but hopefully serve to animate these
lifeless views. Perhaps they're odd interstellar nebulae.

In all three geometries one set of perpendiculars all point
toward the same vanishing point (V).

Both Eulcidean and Hyperbolic views have Horizons.
The Hyperbolic plane forms its Horizon lower than the
Euclidean view. Both the transverse perpendiculars and the
human figures illustrate that distances appear to recede
more quickly in Hyperbolic than in Euclidean space. No
portion of the Hyperbolic plane's image disappears, its
Horizon displays its infinite divergence.

From side to side, the Hyperbolic plane appears gently
curved as it diverges away from the Eye's central sightline.

Discussion of the Elliptic Perspective starts on page 41.
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DRAWING 21:

Looking out across a plane with
perpendicular lines and Equidistant Curves
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This Elliptic Perspective was a struggle. Now that I see
it, I could improve it. For example careful re-spacing of the
perpendiculars could resolve the bits of Equidistant Curves
near the center. But let me explain what I have.

A plane in Elliptic Geometry turns out to be similar to the
surface of sphere, where a straight line is a great-circle, like
Earth's equator, and the set of perpendiculars to that line are
longitudinal meridians, converging at north and south po/es.
Perpendiculars cast from a single straight line in Elliptic
Geometry will converge until they intersect at a pole.
Elliptic Geometries with a single po/e are possible
(analagous to a Mobius Strip) but are not examined in this
text. In this book, Elliptic Geometry means the 2-pole
version. In Elliptic Geometry every line is finite in length
and boundless, its path always returning to its point of
origin, a closed circuit.

Here, in our Drawing 21(a), all the perpendicular lines
pointing forward intersect at the center of the picture. Their
second pole would appear in the opposite direction, behind
the Eye. Our second set of perpendiculars also converge,
with one pol/e on the left and the other on the right. Those 4
views (front, back, left, and right) are all identical. The
Eye's view directly overhead would be similar to Drawing
20(a); its view down would be Approximately Euclidean.

Though difficult to sense in this Perspective, the image
of this Elliptic plane side-to-side should appear to curl
upward slightly, complimentarily opposite the slight
side-to-side downward curl of the Hyperbolic image--

Drawing 20(c).

The most obvious feature of this view is the plane
climbing as it recedes beyond the po/e. The man at left is
positioned along one of the lines crossing the pole, to
illustrate that such lines continue on the picture's opposite
side. I questioned whether that figure should be mirrored,
or inverted, but concluded that such effects would depend
on exactly how the man's construction had been specified.

Drawing 23 graphs the angles and distances of various
points along one of this plane's main axes (with respect to
the Eye). Paradoxically the plane is truly flat. In somewhat
similar manner Elliptic lines (and planes) all appear to
circuit around the Eye.
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DRAWING 21(a):

(Repeated)
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DRAWING 22: Diagram plotting angles and distances from
the Eye to points along the central main axis of

the plane viewed in Drawing 20(a), above.
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If the finite lines of elliptic space return to their origins,
would the Eye be able to see itself in Drawing 22(c)? My

equations fail at the precise angle of the central line of sight,

but when I set a line just slightly off center, at distance
0.001 below the Eye, I can plot its new pathway, graphed in
Drawing 23. A similar path 0.001 above the Eye would be
its mirror (with respect to the central line line of sight).

From such close approximations I extrapolate to
conclude that, no matter how we turned the direction of the
central line of sight, from this point the Eye's vision would
always strike the plane, never return to see itself. As
Perspective Drawing 22(c) confirms, in this particular case
the central ray from the Eye intersects this plane exactly at
the pol/e formed by the converging perpendiculars.

We may also predict the appearance of a small ship jetting

through empty Elliptic space, heading away from our Eye
precisely along its original central line of sight. Ahead, the
Eye will see the rear of the ship receding but if it quickly
turned, our Eye could also see the front of the ship much
farther away, approaching from the opposite direction.
Under proper conditions the Eye would witness a sudden
faint flash filling the entire surrounding visual sphere,
progressing rapidly from the direction the ship originally
headed toward the opposite side of the sky. That flash
would be the ship passing the midpoint of its circuit. Its
ever receding stern might still be visible in the direction of
its depature, even as an image of the ship's prow would be
seen advancing from the opposite direction.

Under proper conditions, in an otherwise empty Elliptic
space, the Eye would see the body of its own housing
spread across the entire sphere of surrounding sky, its own
back seen ahead, and its own top seen below.

A practical person should protest that these last examples
violate our Perspective aparatus' original assumptions. By
considering neither time-lags due to the speed of light nor
Relativistic effects due to motion, the sizes implied for our
subjects have become far too small to be deemed realistic.

In closing, I would like to mention that finite, boundless,
self-returning lines are not necessarily unique to Elliptic
Geometry. By additional postulates, Hyperbolic or
Euclidean geometries may also acquire these, or similar,
attributes. Such possibilities are subjects in Topology.
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DRAWING 23: A Diagram of the path of a ray similarly
positioned ""0.001" below the central line
of sight, superimposed on the graph of
an axis of the plane positioned at
distance "'S" below the Eye (Drawing 22).
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